Niedermaier S, Hilgendorff A (2015) Bronchopulmonary dysplasia - an overview about pathophysiologic concepts. Mol Cell Pediatr 2:2. https://doi.org/10.1186/s40348-015-0013-7
Article
PubMed
PubMed Central
Google Scholar
Glass HC, Costarino AT, Stayer SA et al (2015) Outcomes for extremely premature infants. Anesth Analg 120:1337–1351. https://doi.org/10.1213/ANE.0000000000000705
Article
PubMed
PubMed Central
Google Scholar
McGeachie MJ, Yates KP, Zhou X et al (2016) Patterns of growth and decline in lung function in persistent childhood asthma. N Engl J Med 374:1842–1852. https://doi.org/10.1056/NEJMoa1513737
Article
CAS
PubMed
PubMed Central
Google Scholar
Tong Y, Zhang S, Riddle S et al (2021) Intrauterine hypoxia and epigenetic programming in lung development and disease. Biomedicines 9:944. https://doi.org/10.3390/biomedicines9080944
Article
CAS
PubMed
PubMed Central
Google Scholar
Biniwale MA, Ehrenkranz RA (2006) The role of nutrition in the prevention and management of bronchopulmonary dysplasia. Semin Perinatol 30:200–208. https://doi.org/10.1053/j.semperi.2006.05.007
Article
PubMed
Google Scholar
Trembath A, Laughon MM (2012) Predictors of bronchopulmonary dysplasia. Clin Perinatol 39:585–601. https://doi.org/10.1016/j.clp.2012.06.014
Article
PubMed
PubMed Central
Google Scholar
Riyas PK, Vijayakumar KM, Kulkarni ML (2003) Neonatal mechanical ventilation. Indian J Pediatr 70:537–540. https://doi.org/10.1007/BF02723151
Article
CAS
PubMed
Google Scholar
Mokres LM, Parai K, Hilgendorff A et al (2010) Prolonged mechanical ventilation with air induces apoptosis and causes failure of alveolar septation and angiogenesis in lungs of newborn mice. Am J Physiol Cell Mol Physiol 298:L23–L35. https://doi.org/10.1152/ajplung.00251.2009
Article
CAS
Google Scholar
Jong E, Strunk T, Burgner D et al (2017) The phenotype and function of preterm infant monocytes: implications for susceptibility to infection. J Leukoc Biol 102:645–656. https://doi.org/10.1189/jlb.4ru0317-111r
Article
CAS
PubMed
Google Scholar
Driscoll KE, Carter JM, Hassenbein DG, Howard B (1997) Cytokines and particle-induced inflammatory cell recruitment. Environ Health Perspect 105:1159–1164. https://doi.org/10.1289/ehp.97105s51159
Article
CAS
PubMed
PubMed Central
Google Scholar
Groneck P, Götze-Speer B, Oppermann M et al (1994) Association of pulmonary inflammation and increased microvascular permeability during the development of bronchopulmonary dysplasia: a sequential analysis of inflammatory mediators in respiratory fluids of high-risk preterm neonates. Pediatrics 93:712–718
Article
CAS
Google Scholar
Sun Y, Chen C, Zhang X et al (2019) High neutrophil-to-lymphocyte ratio is an early predictor of bronchopulmonary dysplasia. Front Pediatr 7:1–9. https://doi.org/10.3389/fped.2019.00464
Article
CAS
Google Scholar
Kramer BW, Kallapur S, Newnham J, Jobe AH (2009) Prenatal inflammation and lung development. Semin Fetal Neonatal Med 14:2–7. https://doi.org/10.1016/j.siny.2008.08.011
Article
PubMed
Google Scholar
Balany J, Bhandari V (2015) Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia. Front Med 2:1–10. https://doi.org/10.3389/fmed.2015.00090
Article
Google Scholar
Wright RJ, Visness CM, Calatroni A et al (2010) Prenatal maternal stress and cord blood innate and adaptive cytokine responses in an inner-city cohort. Am J Respir Crit Care Med 182:25–33. https://doi.org/10.1164/rccm.200904-0637OC
Article
CAS
PubMed
PubMed Central
Google Scholar
Humberg A, Fortmann I, Siller B et al (2020) Preterm birth and sustained inflammation: consequences for the neonate. Semin Immunopathol 42:451–468. https://doi.org/10.1007/s00281-020-00803-2
Article
PubMed
PubMed Central
Google Scholar
Agrawal V, Hirsch E (2012) Intrauterine infection and preterm labor. Semin Fetal Neonatal Med 17:12–19. https://doi.org/10.1016/j.siny.2011.09.001
Article
PubMed
Google Scholar
Basha S, Surendran N, Pichichero M (2014) Immune responses in neonates. Expert Rev Clin Immunol 10:1171–1184. https://doi.org/10.1586/1744666X.2014.942288
Article
CAS
PubMed
PubMed Central
Google Scholar
Palmeira P, Quinello C, Silveira-Lessa AL et al (2012) IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol 2012:1–13. https://doi.org/10.1155/2012/985646
Article
CAS
Google Scholar
Speer CP (2006) Pulmonary inflammation and bronchopulmonary dysplasia. J Perinatol 26:S57–S62. https://doi.org/10.1038/sj.jp.7211476
Article
CAS
PubMed
Google Scholar
Speer CP (2006) Inflammation and bronchopulmonary dysplasia: a continuing story. Semin Fetal Neonatal Med 11:354–362
Article
Google Scholar
Goetz MJ, Kremer S, Behnke J et al (2021) MSC based therapies to prevent or treat BPD—a narrative review on advances and ongoing challenges. Int J Mol Sci 22:1138. https://doi.org/10.3390/ijms22031138
Article
CAS
PubMed
PubMed Central
Google Scholar
Heydarian M, Oak P, Zhang X et al (2022) Relationship between impaired BMP signalling and clinical risk factors at early-stage vascular injury in the preterm infant. Thorax thoraxjnl-2021-218083. https://doi.org/10.1136/thoraxjnl-2021-218083
Eldredge LC, Creasy RS, Presnell S et al (2019) Infants with evolving bronchopulmonary dysplasia demonstrate monocyte-specific expression of IL-1 in tracheal aspirates. Am J Physiol Cell Mol Physiol 317:L49–L56. https://doi.org/10.1152/ajplung.00060.2019
Article
CAS
Google Scholar
Levy O (2007) Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol 7:379–390. https://doi.org/10.1038/nri2075
Article
CAS
PubMed
Google Scholar
Yu JC, Khodadadi H, Malik A et al (2018) Innate immunity of neonates and infants. Front Immunol 9. https://doi.org/10.3389/fimmu.2018.01759
Newburg DS, Walker WA (2007) Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr Res 61:2–8. https://doi.org/10.1203/01.pdr.0000250274.68571.18
Article
CAS
PubMed
Google Scholar
MacGillivray DM, Kollmann TR (2014) The role of environmental factors in modulating immune responses in early life. Front Immunol 5:ji2101192. https://doi.org/10.3389/fimmu.2014.00434
Article
CAS
Google Scholar
Sokol CL, Luster AD (2015) The chemokine system in innate immunity. Cold Spring Harb Perspect Biol 7:a016303. https://doi.org/10.1101/cshperspect.a016303
Article
PubMed
PubMed Central
Google Scholar
Clark R, Kupper T (2005) Old meets new: the interaction between innate and adaptive immunity. J Invest Dermatol 125:629–637. https://doi.org/10.1111/j.0022-202X.2005.23856.x
Article
CAS
PubMed
Google Scholar
Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:1–12. https://doi.org/10.3389/fimmu.2014.00491
Article
CAS
Google Scholar
Ibrahim J, Garantziotis S, Savani RC (2020) The inflammation superhighway. In: Updates on neonatal chronic lung disease. Elsevier, Philadelphia, pp 131–150. https://doi.org/10.1016/B978-0-323-68353-1.00009-9
Martin TR (2005) Innate immunity in the lungs. Proc Am Thorac Soc 2:403–411. https://doi.org/10.1513/pats.200508-090JS
Article
CAS
PubMed
PubMed Central
Google Scholar
Glaser, Coulter, Shields et al (2019) Airway epithelial derived cytokines and chemokines and their role in the immune response to respiratory syncytial virus infection. Pathogens 8:106. https://doi.org/10.3390/pathogens8030106
Article
CAS
PubMed Central
Google Scholar
Hewitt RJ, Lloyd CM (2021) Regulation of immune responses by the airway epithelial cell landscape. Nat Rev Immunol 21:347–362. https://doi.org/10.1038/s41577-020-00477-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Qing C, Ziyun L, Xuefei Y et al (2022) Protective effects of 18β-glycyrrhetinic acid on neonatal rats with hyperoxia exposure. Inflammation. https://doi.org/10.1007/s10753-021-01616-7
Heydarian M, Schweinlin M, Schwarz T et al (2021) Triple co-culture and perfusion bioreactor for studying the interaction between Neisseria gonorrhoeae and neutrophils: a novel 3D tissue model for bacterial infection and immunity. J Tissue Eng 12:204173142098880. https://doi.org/10.1177/2041731420988802
Article
CAS
Google Scholar
Misharin AV, Morales-Nebreda L, Reyfman PA et al (2017) Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med 214:2387–2404. https://doi.org/10.1084/jem.20162152
Article
CAS
PubMed
PubMed Central
Google Scholar
Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 5:1–22. https://doi.org/10.3389/fimmu.2014.00514
Article
CAS
Google Scholar
Honda A, Hoeksema MA, Sakai M et al (2022) The lung microenvironment instructs gene transcription in neonatal and adult alveolar macrophages. J Immunol 26:ji2101192. https://doi.org/10.4049/jimmunol.2101192
Article
CAS
Google Scholar
Ambalavanan N, Carlo WA, D’Angio CT et al (2009) Cytokines associated with bronchopulmonary dysplasia or death in extremely low birth weight infants. Pediatrics 123:1132–1141. https://doi.org/10.1542/peds.2008-0526
Article
PubMed
Google Scholar
Baier RJ, Majid A, Parupia H et al (2004) CC chemokine concentrations increase in respiratory distress syndrome and correlate with development of bronchopulmonary dysplasia. Pediatr Pulmonol 37:137–148. https://doi.org/10.1002/ppul.10417
Article
PubMed
Google Scholar
Bose CL, Dammann CEL, Laughon MM (2008) Bronchopulmonary dysplasia and inflammatory biomarkers in the premature neonate. Arch Dis Child - Fetal Neonatal Ed 93:F455–F461. https://doi.org/10.1136/adc.2007.121327
Article
CAS
PubMed
Google Scholar
Wagenaar GTM, ter Horst SA, van Gastelen MA et al (2004) Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress. Free Radic Biol Med 36:782–801. https://doi.org/10.1016/j.freeradbiomed.2003.12.007
Article
CAS
PubMed
Google Scholar
Köksal N, Kayık B, Çetinkaya M et al (2012) Value of serum and bronchoalveolar fluid lavage pro- and anti-inflammatory cytokine levels for predicting bronchopulmonary dysplasia in premature infants. Eur Cytokine Netw 23:29–35. https://doi.org/10.1684/ecn.2012.0304
Article
CAS
PubMed
Google Scholar
Baier RJ, Loggins J, Kruger TE (2003) Interleukin-4 and 13 concentrations in infants at risk to develop Bronchopulmonary Dysplasia. BMC Pediatr 3:8. https://doi.org/10.1186/1471-2431-3-8
Article
PubMed
PubMed Central
Google Scholar
Cai J, Lu H, Su Z et al (2022) Dynamic changes of NCR− type 3 innate lymphoid cells and their role in mice with bronchopulmonary dysplasia. Inflammation. https://doi.org/10.1007/s10753-021-01543-7
Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T (2017) The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm 2017:1–11. https://doi.org/10.1155/2017/3908061
Article
CAS
Google Scholar
Schibler KR, Liechty KW, White WL, Christensen RD (1993) Production of granulocyte colony-stimulating factor in vitro by monocytes from preterm and term neonates. Blood 82:2478–2484. https://doi.org/10.1182/blood.V82.8.2478.2478
Article
CAS
PubMed
Google Scholar
Wright CJ, Kirpalani H (2011) Targeting inflammation to prevent bronchopulmonary dysplasia: can new insights be translated into therapies? Pediatrics 128:111–126. https://doi.org/10.1542/peds.2010-3875
Article
PubMed
PubMed Central
Google Scholar
Savani RC (2018) Modulators of inflammation in bronchopulmonary dysplasia. Semin Perinatol 42:459–470. https://doi.org/10.1053/j.semperi.2018.09.009
Article
PubMed
PubMed Central
Google Scholar
Beck-Schimmer B, Schwendener R, Pasch T et al (2005) Alveolar macrophages regulate neutrophil recruitment in endotoxin-induced lung injury. Respir Res 6:61. https://doi.org/10.1186/1465-9921-6-61
Article
CAS
PubMed
PubMed Central
Google Scholar
Phillipson M, Kubes P (2011) The neutrophil in vascular inflammation. Nat Med 17:1381–1390. https://doi.org/10.1038/nm.2514
Article
CAS
PubMed
PubMed Central
Google Scholar
Aggarwal NR, King LS, D’Alessio FR (2014) Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Cell Mol Physiol 306:L709–L725. https://doi.org/10.1152/ajplung.00341.2013
Article
CAS
Google Scholar
Christensen RD (1989) Hematopoiesis in the fetus and neonate. Pediatr Res 26:531–532. https://doi.org/10.1203/00006450-198912000-00001
Article
CAS
PubMed
Google Scholar
Furze RC, Rankin SM (2008) Neutrophil mobilization and clearance in the bone marrow. Immunology 125:281–288. https://doi.org/10.1111/j.1365-2567.2008.02950.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Prame Kumar K, Nicholls AJ, Wong CHY (2018) Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res 371:551–565. https://doi.org/10.1007/s00441-017-2753-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Nauseef WM, Borregaard N (2014) Neutrophils at work. Nat Immunol 15:602–611. https://doi.org/10.1038/ni.2921
Article
CAS
PubMed
Google Scholar
Bayr H (2005) Reactive oxygen species. Crit Care Med 33:S498–S501. https://doi.org/10.1097/01.CCM.0000186787.64500.12
Article
Google Scholar
Wen ST, Chen W, Chen HL et al (2013) Amniotic fluid stem cells from EGFP transgenic mice attenuate hyperoxia-induced acute lung injury. PLoS One 8. https://doi.org/10.1371/journal.pone.0075383
Turunen R, Nupponen I, Siitonen S et al (2006) Onset of mechanical ventilation is associated with rapid activation of circulating phagocytes in preterm infants. Pediatrics 117:448–454. https://doi.org/10.1542/peds.2005-0123
Article
PubMed
Google Scholar
Yildiz C, Palaniyar N, Otulakowski G et al (2015) Mechanical ventilation induces neutrophil extracellular trap formation. Anesthesiology 122:864–875. https://doi.org/10.1097/ALN.0000000000000605
Article
CAS
PubMed
Google Scholar
Thomas JM, Sudhadevi T, Basa P et al (2022) The role of sphingolipid signaling in oxidative lung injury and pathogenesis of bronchopulmonary dysplasia. Int J Mol Sci 23:1254. https://doi.org/10.3390/ijms23031254
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Dong W (2018) Oxidative stress and bronchopulmonary dysplasia. Gene 678:177–183. https://doi.org/10.1016/j.gene.2018.08.031
Article
CAS
PubMed
Google Scholar
Vargas A, Roux-Dalvai F, Droit A, Lavoie J-P (2016) Neutrophil-derived exosomes: a new mechanism contributing to airway smooth muscle remodeling. Am J Respir Cell Mol Biol 55:450–461. https://doi.org/10.1165/rcmb.2016-0033OC
Article
CAS
PubMed
Google Scholar
Genschmer KR, Russell DW, Lal C et al (2019) Activated PMN exosomes: pathogenic entities causing matrix destruction and disease in the lung. Cell 176:113–126.e15. https://doi.org/10.1016/j.cell.2018.12.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Yi M, Jankov RP, Belcastro R et al (2004) Opposing effects of 60% oxygen and neutrophil influx on alveologenesis in the neonatal rat. Am J Respir Crit Care Med 170:1188–1196. https://doi.org/10.1164/rccm.200402-215OC
Article
PubMed
Google Scholar
Mižíková I, Morty RE (2015) The extracellular matrix in bronchopulmonary dysplasia: target and source. Front Med 2:1–20. https://doi.org/10.3389/fmed.2015.00091
Article
Google Scholar
Xu J, Mao X, Jin R et al (2020) Neutrophil extracellular traps degrade fibronectin in a rat model of bronchopulmonary dysplasia induced by perinatal exposure to lipopolysaccharide. J Cell Mol Med 24:14645–14649. https://doi.org/10.1111/jcmm.15842
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Y, Huang Y, Ji Q et al (2021) Interplay between extracellular matrix and neutrophils in diseases. J Immunol Res 2021:1–11. https://doi.org/10.1155/2021/8243378
Article
CAS
Google Scholar
Yasumatsu R, Altiok O, Benarafa C et al (2006) SERPINB1 upregulation is associated with in vivo complex formation with neutrophil elastase and cathepsin G in a baboon model of bronchopulmonary dysplasia. Am J Physiol Cell Mol Physiol 291:L619–L627. https://doi.org/10.1152/ajplung.00507.2005
Article
CAS
Google Scholar
Carr R (2000) Neutrophil production and function in newborn infants. Br J Haematol 110:18–28. https://doi.org/10.1046/j.1365-2141.2000.01992.x
Article
CAS
PubMed
Google Scholar
Hellebrekers P, Vrisekoop N, Koenderman L (2018) Neutrophil phenotypes in health and disease. Eur J Clin Invest 48:e12943. https://doi.org/10.1111/eci.12943
Article
CAS
PubMed
PubMed Central
Google Scholar
Yost CC, Cody MJ, Harris ES et al (2009) Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood 113:6419–6427. https://doi.org/10.1182/blood-2008-07-171629
Article
CAS
PubMed
PubMed Central
Google Scholar
Amulic B, Cazalet C, Hayes GL et al (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489. https://doi.org/10.1146/annurev-immunol-020711-074942
Article
CAS
PubMed
Google Scholar
Ballabh P (2004) Neutrophil and monocyte adhesion molecules in bronchopulmonary dysplasia, and effects of corticosteroids. Arch Dis Child - Fetal Neonatal Ed 89:76–83. https://doi.org/10.1136/fn.89.1.F76
Article
Google Scholar
Li X, Wang Q, Luo T, Li T (2020) Decreased neutrophil levels in bronchopulmonary dysplasia infants. Pediatr Neonatol 61:637–644. https://doi.org/10.1016/j.pedneo.2020.08.013
Article
PubMed
Google Scholar
Kroon AA, Wang J, Huang Z et al (2010) Inflammatory response to oxygen and endotoxin in newborn rat lung ventilated with low tidal volume. Pediatr Res 68:63–69. https://doi.org/10.1203/PDR.0b013e3181e17caa
Article
CAS
PubMed
Google Scholar
Grigg JM, Silverman M, Savill JS et al (1991) Neutrophil apoptosis and clearance from neonatal lungs. Lancet 338:720–722. https://doi.org/10.1016/0140-6736(91)91443-X
Article
CAS
PubMed
Google Scholar
Scott CL, Henri S, Guilliams M (2014) Mononuclear phagocytes of the intestine, the skin, and the lung. Immunol Rev 262:9–24. https://doi.org/10.1111/imr.12220
Article
CAS
PubMed
Google Scholar
Landsman L, Jung S (2007) Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages. J Immunol 179:3488–3494. https://doi.org/10.4049/jimmunol.179.6.3488
Article
CAS
PubMed
Google Scholar
McQuattie-Pimentel AC, Budinger GRS, Ballinger MN (2018) Monocyte-derived alveolar macrophages: the dark side of lung repair? Am J Respir Cell Mol Biol 58:5–6. https://doi.org/10.1165/rcmb.2017-0328ED
Article
CAS
PubMed
Google Scholar
Kalymbetova TV, Selvakumar B, Rodríguez-Castillo JA et al (2018) Resident alveolar macrophages are master regulators of arrested alveolarization in experimental bronchopulmonary dysplasia. J Pathol 245:153–159. https://doi.org/10.1002/path.5076
Article
CAS
PubMed
Google Scholar
Sanchez-Schmitz G, Morrocchi E, Cooney M et al (2020) Neonatal monocytes demonstrate impaired homeostatic extravasation into a microphysiological human vascular model. Sci Rep 10:17836. https://doi.org/10.1038/s41598-020-74639-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi C, Pamer EG (2011) Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11:762–774. https://doi.org/10.1038/nri3070
Article
CAS
PubMed
PubMed Central
Google Scholar
Gerhardt T, Ley K (2015) Monocyte trafficking across the vessel wall. Cardiovasc Res 107:321–330. https://doi.org/10.1093/cvr/cvv147
Article
CAS
PubMed
PubMed Central
Google Scholar
Lechner AJ, Driver IH, Lee J et al (2017) Recruited monocytes and type 2 immunity promote lung regeneration following pneumonectomy. Cell Stem Cell 21:120–134.e7. https://doi.org/10.1016/j.stem.2017.03.024
Article
CAS
PubMed
PubMed Central
Google Scholar
Hallwirth U, Pomberger G, Pollak A et al (2004) Monocyte switch in neonates: high phagocytic capacity and low HLA-DR expression in VLBWI are inverted during gestational aging. Pediatr Allergy Immunol 15:513–516. https://doi.org/10.1111/j.1399-3038.2004.00168.x
Article
PubMed
Google Scholar
Kapellos TS, Bonaguro L, Gemünd I et al (2019) Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front Immunol 10:1–13. https://doi.org/10.3389/fimmu.2019.02035
Article
CAS
Google Scholar
Ong S-M, Teng K, Newell E et al (2019) A novel, five-marker alternative to CD16–CD14 gating to identify the three human monocyte subsets. Front Immunol 10:1761. https://doi.org/10.3389/fimmu.2019.01761
Article
CAS
PubMed
PubMed Central
Google Scholar
Chimen M, Yates CM, McGettrick HM et al (2017) Monocyte subsets coregulate inflammatory responses by integrated signaling through TNF and IL-6 at the endothelial cell interface. J Immunol 198:2834–2843. https://doi.org/10.4049/jimmunol.1601281
Article
CAS
PubMed
PubMed Central
Google Scholar
Narasimhan PB, Marcovecchio P, Hamers AAJ, Hedrick CC (2019) Nonclassical monocytes in health and disease. Annu Rev Immunol 37:439–456. https://doi.org/10.1146/annurev-immunol-042617-053119
Article
CAS
PubMed
Google Scholar
Spahn JH, Kreisel D (2014) Monocytes in sterile inflammation: recruitment and functional consequences. Arch Immunol Ther Exp (Warsz) 62:187–194. https://doi.org/10.1007/s00005-013-0267-5
Article
CAS
Google Scholar
Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82. https://doi.org/10.1016/S1074-7613(03)00174-2
Article
CAS
PubMed
Google Scholar
Ziegler-Heitbrock L, Ancuta P, Crowe S et al (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116:74–80. https://doi.org/10.1182/blood-2010-02-258558
Article
CAS
Google Scholar
Carlin LM, Stamatiades EG, Auffray C et al (2013) Nr4a1-dependent Ly6Clow monocytes monitor endothelial cells and orchestrate their disposal. Cell 153:362–375. https://doi.org/10.1016/j.cell.2013.03.010
Article
CAS
PubMed
PubMed Central
Google Scholar
Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455. https://doi.org/10.1038/nature12034
Article
CAS
PubMed
PubMed Central
Google Scholar
Glod J, Kobiler D, Noel M et al (2006) Monocytes form a vascular barrier and participate in vessel repair after brain injury. Blood 107:940–946. https://doi.org/10.1182/blood-2004-11-4403
Article
CAS
PubMed
PubMed Central
Google Scholar
Hernandez GE, Iruela-Arispe ML (2020) The many flavors of monocyte/macrophage--endothelial cell interactions. Curr Opin Hematol 27:181–189. https://doi.org/10.1097/MOH.0000000000000573
Article
CAS
PubMed
PubMed Central
Google Scholar
van Gils JM, Zwaginga JJ, Hordijk PL (2009) Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J Leukoc Biol 85:195–204. https://doi.org/10.1189/jlb.0708400
Article
CAS
PubMed
Google Scholar
Hakkert B, Kuijpers T, Leeuwenberg J et al (1991) Neutrophil and monocyte adherence to and migration across monolayers of cytokine-activated endothelial cells: the contribution of CD18, ELAM-1, and VLA-4. Blood 78:2721–2726. https://doi.org/10.1182/blood.V78.10.2721.2721
Article
CAS
PubMed
Google Scholar
Gordon S (1995) The macrophage. BioEssays 17:977–986. https://doi.org/10.1002/bies.950171111
Article
CAS
PubMed
Google Scholar
Kaufman D, Kilpatrick L, Hudson RG et al (1999) Decreased superoxide production, degranulation, tumor necrosis factor alpha secretion, and CD11b/CD18 receptor expression by adherent monocytes from preterm infants. Clin Diagnostic Lab Immunol 6:525–529. https://doi.org/10.1128/CDLI.6.4.525-529.1999
Article
CAS
Google Scholar
Oak P, Hilgendorff A (2017) The BPD trio? Interaction of dysregulated PDGF, VEGF, and TGF signaling in neonatal chronic lung disease. Mol Cell Pediatr 4. https://doi.org/10.1186/s40348-017-0076-8
Bartram U, Speer CP (2004) The role of transforming growth factor β in lung development and disease. Chest 125:754–765. https://doi.org/10.1378/chest.125.2.754
Article
PubMed
Google Scholar
Alejandre-Alcázar MA, Michiels-Corsten M, Vicencio AG et al (2008) TGF-β signaling is dynamically regulated during the alveolarization of rodent and human lungs. Dev Dyn 237:259–269. https://doi.org/10.1002/dvdy.21403
Article
CAS
PubMed
Google Scholar
Kunzmann S, Speer CP, Jobe AH, Kramer BW (2007) Antenatal inflammation induced TGF-β1 but suppressed CTGF in preterm lungs. Am J Physiol Cell Mol Physiol 292:L223–L231. https://doi.org/10.1152/ajplung.00159.2006
Article
CAS
Google Scholar
Yu X, Buttgereit A, Lelios I et al (2017) The cytokine TGF-β promotes the development and homeostasis of alveolar macrophages. Immunity 47:903–912.e4. https://doi.org/10.1016/j.immuni.2017.10.007
Article
CAS
PubMed
Google Scholar
Wahl SM, Hunt DA, Wakefield LM et al (1987) Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci 84:5788–5792. https://doi.org/10.1073/pnas.84.16.5788
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelly A, Gunaltay S, McEntee CP et al (2018) Human monocytes and macrophages regulate immune tolerance via integrin αvβ8–mediated TGFβ activation. J Exp Med 215:2725–2736. https://doi.org/10.1084/jem.20171491
Article
CAS
PubMed
PubMed Central
Google Scholar
Lavin Y, Winter D, Blecher-Gonen R et al (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326. https://doi.org/10.1016/j.cell.2014.11.018
Article
CAS
PubMed
PubMed Central
Google Scholar
Perdiguero EG, Klapproth K, Schulz C et al (2015) Tissue-resident macrophages originate from yolk sac-derived erythro-myeloid progenitors. Exp Hematol 43:S64. https://doi.org/10.1016/j.exphem.2015.06.130
Article
Google Scholar
Hoeffel G, Chen J, Lavin Y et al (2015) C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42:665–678. https://doi.org/10.1016/j.immuni.2015.03.011
Article
CAS
PubMed
PubMed Central
Google Scholar
Kopf M, Schneider C, Nobs SP (2015) The development and function of lung-resident macrophages and dendritic cells. Nat Immunol 16:36–44. https://doi.org/10.1038/ni.3052
Article
CAS
PubMed
Google Scholar
Guilliams M, De Kleer I, Henri S et al (2013) Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med 210:1977–1992. https://doi.org/10.1084/jem.20131199
Article
CAS
PubMed
PubMed Central
Google Scholar
van de Laar L, Saelens W, De Prijck S et al (2016) Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44:755–768. https://doi.org/10.1016/j.immuni.2016.02.017
Article
CAS
PubMed
Google Scholar
Evren E, Ringqvist E, Doisne J-M et al (2022) CD116+ fetal precursors migrate to the perinatal lung and give rise to human alveolar macrophages. J Exp Med 219. https://doi.org/10.1084/jem.20210987
Yang J, Zhang L, Yu C et al (2014) Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2:1–9. https://doi.org/10.1186/2050-7771-2-1
Article
PubMed
PubMed Central
Google Scholar
Milan A, Priante E, Nardo D et al (2017) Early macrophage activation in preterm newborns and respiratory disease. J Child Sci 07:e110–e119. https://doi.org/10.1055/s-0037-1605579
Article
Google Scholar
Atochina-Vasserman EN, Bates SR, Zhang P et al (2011) Early alveolar epithelial dysfunction promotes lung inflammation in a mouse model of Hermansky-Pudlak Syndrome. Am J Respir Crit Care Med 184:449–458. https://doi.org/10.1164/rccm.201011-1882OC
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibbons MA, MacKinnon AC, Ramachandran P et al (2011) Ly6C hi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis. Am J Respir Crit Care Med 184:569–581. https://doi.org/10.1164/rccm.201010-1719OC
Article
CAS
PubMed
Google Scholar
Janssen WJ, Barthel L, Muldrow A et al (2011) Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am J Respir Crit Care Med 184:547–560. https://doi.org/10.1164/rccm.201011-1891OC
Article
CAS
PubMed
PubMed Central
Google Scholar
Sahoo D, Zaramela LS, Hernandez GE et al (2020) Transcriptional profiling of lung macrophages identifies a predictive signature for inflammatory lung disease in preterm infants. Commun Biol 3:259. https://doi.org/10.1038/s42003-020-0985-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Kramer BW, Jobe AH, Ikegami M (2003) Monocyte function in preterm, term, and adult sheep. Pediatr Res 54:52–57. https://doi.org/10.1203/01.PDR.0000066621.11877.33
Article
PubMed
Google Scholar
Dreschers S, Ohl K, Schulte N et al (2020) Impaired functional capacity of polarised neonatal macrophages. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-019-56928-4
Article
CAS
Google Scholar
Hegge I, Niepel F, Lange A et al (2019) Functional analysis of granulocyte and monocyte subpopulations in neonates. Mol Cell Pediatr 6. https://doi.org/10.1186/s40348-019-0092-y
Yachie A, Takano N, Ohta K et al (1992) Defective production of interleukin-6 in very small premature infants in response to bacterial pathogens. Infect Immun 60:749–753. https://doi.org/10.1128/iai.60.3.749-753.1992
Article
CAS
PubMed
PubMed Central
Google Scholar
Currie AJ, Curtis S, Strunk T et al (2011) Preterm infants have deficient monocyte and lymphocyte cytokine responses to group B Streptococcus. Infect Immun 79:1588–1596. https://doi.org/10.1128/IAI.00535-10
Article
CAS
PubMed
PubMed Central
Google Scholar
Davidson L, Berkelhamer S (2017) Bronchopulmonary dysplasia: chronic lung disease of infancy and long-term pulmonary outcomes. J Clin Med 6:4. https://doi.org/10.3390/jcm6010004
Article
CAS
PubMed Central
Google Scholar
Tullus K, Noack GW, Burman LG et al (1996) Elevated cytokine levels in tracheobronchial aspirate fluids from ventilator treated neonates with bronchopulmonary dysplasia. Eur J Pediatr 155:112–116. https://doi.org/10.1007/BF02075762
Article
CAS
PubMed
Google Scholar
Pugin J, Dunn I, Jolliet P et al (1998) Activation of human macrophages by mechanical ventilation in vitro. Am J Physiol 275:L1040–L1050. https://doi.org/10.1152/ajplung.1998.275.6.L1040
Article
CAS
PubMed
Google Scholar
Jonsson B, Tullus K, Brauner A et al (1997) Early increase of TNFalpha and IL-6 in tracheobronchial aspirate fluid indicator of subsequent chronic lung disease in preterm infants. Arch Dis Child - Fetal Neonatal Ed 77:F198–F201. https://doi.org/10.1136/fn.77.3.F198
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Chen J, Xiong G et al (2016) Increased ROS production in non-polarized mammary epithelial cells induces monocyte infiltration in 3D culture. J Cell Sci 130:190–202. https://doi.org/10.1242/jcs.186031
Article
CAS
PubMed
Google Scholar
Ogden BE, Murphy SA, Saunders GC et al (1984) Neonatal lung neutrophils and elastase/proteinase inhibitor imbalance. Am Rev Respir Dis 130:817–821. https://doi.org/10.1164/arrd.1984.130.5.817
Article
CAS
PubMed
Google Scholar
Baier JR, Loggins J, Kruger TE (2001) Monocyte chemoattractant protein-1 and interleukin-8 are increased in bronchopulmonary dysplasia. J Investig Med 49:362–369. https://doi.org/10.2310/6650.2001.33902
Article
CAS
PubMed
Google Scholar
Davidson D, Miskolci V, Clark DC et al (2007) Interleukin-10 production after pro-inflammatory stimulation of neutrophils and monocytic cells of the newborn. Neonatology 92:127–133. https://doi.org/10.1159/000101432
Article
CAS
PubMed
Google Scholar
Nielsen MC, Andersen MN, Møller HJ (2020) Monocyte isolation techniques significantly impact the phenotype of both isolated monocytes and derived macrophages in vitro. Immunology 159:63–74. https://doi.org/10.1111/imm.13125
Article
CAS
PubMed
Google Scholar
Ehrhardt H, Pritzke T, Oak P et al (2016) Absence of TNF-α enhances inflammatory response in the newborn lung undergoing mechanical ventilation. Am J Physiol - Lung Cell Mol Physiol 310:L909–L918. https://doi.org/10.1152/ajplung.00367.2015
Article
PubMed
PubMed Central
Google Scholar
Oak P, Pritzke T, Thiel I et al (2017) Attenuated PDGF signaling drives alveolar and microvascular defects in neonatal chronic lung disease. EMBO Mol Med 9:1504–1520. https://doi.org/10.15252/emmm.201607308
Article
CAS
PubMed
PubMed Central
Google Scholar
Pruenster M, Kurz ARM, Chung K-J et al (2015) Extracellular MRP8/14 is a regulator of β2 integrin-dependent neutrophil slow rolling and adhesion. Nat Commun 6:6915. https://doi.org/10.1038/ncomms7915
Article
CAS
PubMed
Google Scholar
Doryab A, Tas S, Taskin MB et al (2019) Evolution of bioengineered lung models: recent advances and challenges in tissue mimicry for studying the role of mechanical forces in cell biology. Adv Funct Mater 29:1903114. https://doi.org/10.1002/adfm.201903114
Article
CAS
Google Scholar
Palta M, Sadek-Badawi M, Carlton DP (2008) Association of BPD and IVH with early neutrophil and white counts in VLBW neonates with gestational age <32 weeks. J Perinatol 28:604–610. https://doi.org/10.1038/jp.2008.65
Article
CAS
PubMed
PubMed Central
Google Scholar
Hilgendorff A, Parai K, Ertsey R et al (2011) Inhibiting lung elastase activity enables lung growth in mechanically ventilated newborn mice. Am J Respir Crit Care Med 184:537–546. https://doi.org/10.1164/rccm.201012-2010OC
Article
CAS
PubMed
PubMed Central
Google Scholar
Nold MF, Mangan NE, Rudloff I et al (2013) Interleukin-1 receptor antagonist prevents murine bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia. Proc Natl Acad Sci 110:14384–14389. https://doi.org/10.1073/pnas.1306859110
Article
PubMed
PubMed Central
Google Scholar
Sureshbabu A, Syed MA, Boddupalli CS et al (2015) Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung. Respir Res 16:4. https://doi.org/10.1186/s12931-014-0162-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Alam MA, Betal SGN, Aghai ZH, Bhandari V (2019) Hyperoxia causes miR199a-5p-mediated injury in the developing lung. Pediatr Res 86:579–588. https://doi.org/10.1038/s41390-019-0524-3
Article
CAS
PubMed
Google Scholar
Shrestha D, Ye GX, Stabley D et al (2021) Pulmonary immune cell transcriptome changes in double-hit model of BPD induced by chorioamnionitis and postnatal hyperoxia. Pediatr Res. https://doi.org/10.1038/s41390-020-01319-z