Northway WH, Rosan RC, Porter DY (1967) Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med 276:357–368. https://doi.org/10.1056/NEJM196702162760701
Article
PubMed
Google Scholar
Thébaud B, Goss KN, Laughon M et al (2019) Bronchopulmonary dysplasia. Nat Rev Dis Primers 5:78. https://doi.org/10.1038/s41572-019-0127-7
Article
PubMed
PubMed Central
Google Scholar
Laughon MM, Langer JC, Bose CL et al (2011) Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am J Respir Crit Care Med 183:1715–1722. https://doi.org/10.1164/rccm.201101-0055OC
Article
PubMed
PubMed Central
Google Scholar
Bhandari V, Bizzarro MJ, Shetty A et al (2006) Familial and genetic susceptibility to major neonatal morbidities in preterm twins. Pediatrics 117:1901–1906. https://doi.org/10.1542/peds.2005-1414
Article
PubMed
Google Scholar
Pierro M, Villamor-Martinez E, van Westering-Kroon E et al (2021) Association of the dysfunctional placentation endotype of prematurity with bronchopulmonary dysplasia: a systematic review, meta-analysis and meta-regression. Thorax. https://doi.org/10.1136/thoraxjnl-2020-216485
Morrow LA, Wagner BD, Ingram DA et al (2017) Antenatal determinants of bronchopulmonary dysplasia and late respiratory disease in preterm infants. Am J Respir Crit Care Med 196:364–374. https://doi.org/10.1164/rccm.201612-2414OC
Article
PubMed
PubMed Central
Google Scholar
Lauer T, Behnke J, Oehmke F et al (2020) Bacterial colonization within the first six weeks of life and pulmonary outcome in preterm infants <1000 g. J Clin Med 9. https://doi.org/10.3390/jcm9072240
Thiess T, Lauer T, Woesler A et al (2021) Correlation of early nutritional supply and development of bronchopulmonary dysplasia in preterm infants <1,000 g. Front Pediatr 9:741365. https://doi.org/10.3389/fped.2021.741365
Article
PubMed
PubMed Central
Google Scholar
Staude B, Oehmke F, Lauer T et al (2018) The microbiome and preterm birth: a change in paradigm with profound implications for pathophysiologic concepts and novel therapeutic strategies. Biomed Res Int 2018:7218187. https://doi.org/10.1155/2018/7218187
Article
PubMed
PubMed Central
Google Scholar
Laughon M, Bose C, Allred EN et al (2011) Antecedents of chronic lung disease following three patterns of early respiratory disease in preterm infants. Arch Dis Child Fetal Neonatal Ed 96:F114–F120. https://doi.org/10.1136/adc.2010.182865
Article
PubMed
Google Scholar
Laughon M, Bose C, Allred EN et al (2011) Patterns of blood protein concentrations of ELGANs classified by three patterns of respiratory disease in the first 2 postnatal weeks. Pediatr Res 70:292–296. https://doi.org/10.1203/PDR.0b013e3182274f35
Article
CAS
PubMed
PubMed Central
Google Scholar
Shahzad T, Radajewski S, Chao C-M et al (2016) Pathogenesis of bronchopulmonary dysplasia: when inflammation meets organ development. Mol Cell Pediatr 3:23. https://doi.org/10.1186/s40348-016-0051-9
Article
PubMed
PubMed Central
Google Scholar
Lignelli E, Palumbo F, Myti D et al (2019) Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Phys Lung Cell Mol Phys 317:L832–L887. https://doi.org/10.1152/ajplung.00369.2019
Article
CAS
Google Scholar
Torday JS, Torres E, Rehan VK (2003) The role of fibroblast transdifferentiation in lung epithelial cell proliferation, differentiation, and repair in vitro. Pediatr Pathol Mol Med 22:189–207. https://doi.org/10.1080/pdp.22.3.189.207
Article
CAS
PubMed
Google Scholar
Nardiello C, Mižíková I, Silva DM et al (2017) Standardisation of oxygen exposure in the development of mouse models for bronchopulmonary dysplasia. Dis Model Mech 10:185–196. https://doi.org/10.1242/dmm.027086
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi Y, Rekers L, Dong Y et al (2021) Oxygen toxicity to the immature lung-part I: pathomechanistic understanding and preclinical perspectives. Int J Mol Sci 22. https://doi.org/10.3390/ijms222011006
Leroy S, Caumette E, Waddington C et al (2018) A time-based analysis of inflammation in infants at risk of bronchopulmonary dysplasia. J Pediatr 192:60–65.e1. https://doi.org/10.1016/j.jpeds.2017.09.011
Article
PubMed
Google Scholar
Ehrhardt H, Pritzke T, Oak P et al (2016) Absence of TNF-α enhances inflammatory response in the newborn lung undergoing mechanical ventilation. Am J Phys Lung Cell Mol Phys 310:L909–L918. https://doi.org/10.1152/ajplung.00367.2015
Article
Google Scholar
Collins JJP, Kunzmann S, Kuypers E et al (2013) Antenatal glucocorticoids counteract LPS changes in TGF-β pathway and caveolin-1 in ovine fetal lung. Am J Phys Lung Cell Mol Phys 304:L438–L444. https://doi.org/10.1152/ajplung.00251.2012
Article
CAS
Google Scholar
Collins JJP, Kallapur SG, Knox CL et al (2013) Repeated intrauterine exposures to inflammatory stimuli attenuated transforming growth factor-β signaling in the ovine fetal lung. Neonatology 104:49–55. https://doi.org/10.1159/000350548
Article
CAS
PubMed
Google Scholar
Seedorf G, Kim C, Wallace B et al (2020) rhIGF-1/BP3 preserves lung growth and prevents pulmonary hypertension in experimental bronchopulmonary dysplasia. Am J Respir Crit Care Med 201:1120–1134. https://doi.org/10.1164/rccm.201910-1975OC
Article
CAS
PubMed
PubMed Central
Google Scholar
Oak P, Pritzke T, Thiel I et al (2017) Attenuated PDGF signaling drives alveolar and microvascular defects in neonatal chronic lung disease. EMBO Mol Med 9:1504–1520. https://doi.org/10.15252/emmm.20160730
Article
CAS
PubMed
PubMed Central
Google Scholar
Hilgendorff A, Reiss I, Ehrhardt H et al (2014) Chronic lung disease in the preterm infant. Lessons learned from animal models. Am J Respir Cell Mol Biol 50:233–245. https://doi.org/10.1165/rcmb.2013-0014TR
Article
CAS
PubMed
PubMed Central
Google Scholar
Willis GR, Fernandez-Gonzalez A, Anastas J et al (2018) Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med 197:104–116. https://doi.org/10.1164/rccm.201705-0925OC
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Y, Chen C, Zhang X et al (2020) Heparin improves alveolarization and vascular development in hyperoxia-induced bronchopulmonary dysplasia by inhibiting neutrophil extracellular traps. Biochem Biophys Res Commun 522:33–39. https://doi.org/10.1016/j.bbrc.2019.11.041
Article
CAS
PubMed
Google Scholar
Yi M, Jankov RP, Belcastro R et al (2004) Opposing effects of 60% oxygen and neutrophil influx on alveologenesis in the neonatal rat. Am J Respir Crit Care Med 170:1188–1196. https://doi.org/10.1164/rccm.200402-215OC
Article
PubMed
Google Scholar
Speer CP (2009) Chorioamnionitis, postnatal factors and proinflammatory response in the pathogenetic sequence of bronchopulmonary dysplasia. Neonatology 95:353–361. https://doi.org/10.1159/000209301
Article
CAS
PubMed
Google Scholar
Chao C-M, Yahya F, Moiseenko A et al (2017) Fgf10 deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia. J Pathol 241:91–103. https://doi.org/10.1002/path.4834
Article
CAS
PubMed
Google Scholar
Chao C-M, Moiseenko A, Kosanovic D et al (2019) Impact of Fgf10 deficiency on pulmonary vasculature formation in a mouse model of bronchopulmonary dysplasia. Hum Mol Genet 28:1429–1444. https://doi.org/10.1093/hmg/ddy439
Article
CAS
PubMed
Google Scholar
Goetz MJ, Kremer S, Behnke J et al (2021) MSC based therapies to prevent or treat BPD—a narrative review on advances and ongoing challenges. Int J Mol Sci 22. https://doi.org/10.3390/ijms22031138
Hennrick KT, Keeton AG, Nanua S et al (2007) Lung cells from neonates show a mesenchymal stem cell phenotype. Am J Respir Crit Care Med 175:1158–1164. https://doi.org/10.1164/rccm.200607-941OC
Article
CAS
PubMed
Google Scholar
Reicherzer T, Häffner S, Shahzad T et al (2018) Activation of the NF-κB pathway alters the phenotype of MSCs in the tracheal aspirates of preterm infants with severe BPD. Am J Phys Lung Cell Mol Phys 315:L87–L101. https://doi.org/10.1152/ajplung.00505.2017
Article
CAS
Google Scholar
Popova AP, Bozyk PD, Goldsmith AM et al (2010) Autocrine production of TGF-beta1 promotes myofibroblastic differentiation of neonatal lung mesenchymal stem cells. Am J Phys Lung Cell Mol Phys 298:L735–L743. https://doi.org/10.1152/ajplung.00347.2009
Article
CAS
Google Scholar
Chen H, Sun J, Buckley S et al (2005) Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am J Phys Lung Cell Mol Phys 288:L683–L691. https://doi.org/10.1152/ajplung.00298.2004
Article
CAS
Google Scholar
Alejandre-Alcázar MA, Michiels-Corsten M, Vicencio AG et al (2008) TGF-beta signaling is dynamically regulated during the alveolarization of rodent and human lungs. Dev Dyn 237:259–269. https://doi.org/10.1002/dvdy.21403
Article
CAS
PubMed
Google Scholar
Zhou L, Dey CR, Wert SE et al (1996) Arrested lung morphogenesis in transgenic mice bearing an SP-C-TGF-beta 1 chimeric gene. Dev Biol 175:227–238. https://doi.org/10.1006/dbio.1996.0110
Article
CAS
PubMed
Google Scholar
Kotecha S, Wangoo A, Silverman M et al (1996) Increase in the concentration of transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity. J Pediatr 128:464–469. https://doi.org/10.1016/s0022-3476(96)70355-4
Article
CAS
PubMed
Google Scholar
Noe N, Shim A, Millette K et al (2019) Mesenchyme-specific deletion of Tgf-β1 in the embryonic lung disrupts branching morphogenesis and induces lung hypoplasia. Lab Investig 99:1363–1375. https://doi.org/10.1038/s41374-019-0256-3
Article
CAS
PubMed
Google Scholar
Rong M, Chen S, Zambrano R et al (2016) Inhibition of β-catenin signaling protects against CTGF-induced alveolar and vascular pathology in neonatal mouse lung. Pediatr Res 80:136–144. https://doi.org/10.1038/pr.2016.52
Article
CAS
PubMed
Google Scholar
Alapati D, Rong M, Chen S et al (2011) Connective tissue growth factor antibody therapy attenuates hyperoxia-induced lung injury in neonatal rats. Am J Respir Cell Mol Biol 45:1169–1177. https://doi.org/10.1165/rcmb.2011-0023OC
Article
CAS
PubMed
Google Scholar
Iosef C, Alastalo T-P, Hou Y et al (2012) Inhibiting NF-κB in the developing lung disrupts angiogenesis and alveolarization. Am J Phys Lung Cell Mol Phys 302:L1023–L1036. https://doi.org/10.1152/ajplung.00230.2011
Article
CAS
Google Scholar
Iosef C, Liu M, Ying L et al (2018) Distinct roles for IκB kinases alpha and beta in regulating pulmonary endothelial angiogenic function during late lung development. J Cell Mol Med 22:4410–4422. https://doi.org/10.1111/jcmm.13741
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou Y, Liu M, Husted C et al (2015) Activation of the nuclear factor-κB pathway during postnatal lung inflammation preserves alveolarization by suppressing macrophage inflammatory protein-2. Am J Phys Lung Cell Mol Phys 309:L593–L604. https://doi.org/10.1152/ajplung.00029.2015
Article
CAS
Google Scholar
McKenna S, Butler B, Jatana L et al (2017) Inhibition of IκBβ/NFκB signaling prevents LPS-induced IL1β expression without increasing apoptosis in the developing mouse lung. Pediatr Res 82:1064–1072. https://doi.org/10.1038/pr.2017.182
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirani D, Alvira CM, Danopoulos S et al (2021) Macrophage-derived IL-6 trans-signaling as a novel target in the pathogenesis of bronchopulmonary dysplasia. Eur Respir J. https://doi.org/10.1183/13993003.02248-2020
Li H, Wang G, Lin S et al (2019) Loss of interleukin-6 enhances the inflammatory response associated with hyperoxia-induced lung injury in neonatal mice. Exp Ther Med 17:3101–3107. https://doi.org/10.3892/etm.2019.7315
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheller J, Chalaris A, Schmidt-Arras D et al (2011) The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813:878–888. https://doi.org/10.1016/j.bbamcr.2011.01.034
Article
CAS
PubMed
Google Scholar
Barrington KJ, Finer N, Pennaforte T (2017) Inhaled nitric oxide for respiratory failure in preterm infants. Cochrane Database Syst Rev 1:CD000509. https://doi.org/10.1002/14651858.CD000509.pub5
Article
PubMed
Google Scholar
Ballard RA, Keller RL, Black DM et al (2016) Randomized trial of late surfactant treatment in ventilated preterm infants receiving inhaled nitric oxide. J Pediatr 168:23–29.e4. https://doi.org/10.1016/j.jpeds.2015.09.031
Article
CAS
PubMed
Google Scholar
Ley D, Hallberg B, Hansen-Pupp I et al (2019) rhIGF-1/rhIGFBP-3 in preterm infants: a phase 2 randomized controlled trial. J Pediatr 206:56–65.e8. https://doi.org/10.1016/j.jpeds.2018.10.033
Article
CAS
PubMed
Google Scholar
Löfqvist C, Hellgren G, Niklasson A et al (2012) Low postnatal serum IGF-I levels are associated with bronchopulmonary dysplasia (BPD). Acta Paediatr 101:1211–1216. https://doi.org/10.1111/j.1651-2227.2012.02826.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Beardsall K, Vanhaesebrouck S, Frystyk J et al (2014) Relationship between insulin-like growth factor I levels, early insulin treatment, and clinical outcomes of very low birth weight infants. J Pediatr 164:1038–1044.e1. https://doi.org/10.1016/j.jpeds.2013.12.046
Article
CAS
PubMed
Google Scholar
Hato T, Kimura Y, Morisada T et al (2009) Angiopoietins contribute to lung development by regulating pulmonary vascular network formation. Biochem Biophys Res Commun 381:218–223. https://doi.org/10.1016/j.bbrc.2009.02.030
Article
CAS
PubMed
Google Scholar
Thébaud B, Ladha F, Michelakis ED et al (2005) Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation 112:2477–2486. https://doi.org/10.1161/CIRCULATIONAHA.105.541524
Article
CAS
PubMed
Google Scholar
Kunig AM, Balasubramaniam V, Markham NE et al (2006) Recombinant human VEGF treatment transiently increases lung edema but enhances lung structure after neonatal hyperoxia. Am J Phys Lung Cell Mol Phys 291:L1068–L1078. https://doi.org/10.1152/ajplung.00093.2006
Article
CAS
Google Scholar
Tibboel J, Groenman FA, Selvaratnam J et al (2015) Hypoxia-inducible factor-1 stimulates postnatal lung development but does not prevent O2-induced alveolar injury. Am J Respir Cell Mol Biol 52:448–458. https://doi.org/10.1165/rcmb.2014-0037OC
Article
CAS
PubMed
Google Scholar
Doyle LW, Cheong JL, Hay S et al (2021) Late (≥ 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev 11:CD001145. https://doi.org/10.1002/14651858.CD001145.pub5
Article
PubMed
Google Scholar
Doyle LW, Cheong JL, Hay S et al (2021) Early (< 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev 10:CD001146. https://doi.org/10.1002/14651858.CD001146.pub6
Article
PubMed
Google Scholar
Barrington KJ (2001) The adverse neuro-developmental effects of postnatal steroids in the preterm infant: a systematic review of RCTs. BMC Pediatr 1:1. https://doi.org/10.1186/1471-2431-1-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt B, Roberts RS, Davis P et al (2006) Caffeine therapy for apnea of prematurity. N Engl J Med 354:2112–2121. https://doi.org/10.1056/NEJMoa054065
Article
CAS
PubMed
Google Scholar
Henderson-Smart DJ, de Paoli AG (2010) Methylxanthine treatment for apnoea in preterm infants. Cochrane Database Syst Rev:CD000140. https://doi.org/10.1002/14651858.CD000140.pub2
Endesfelder S, Strauß E, Scheuer T et al (2019) Antioxidative effects of caffeine in a hyperoxia-based rat model of bronchopulmonary dysplasia. Respir Res 20:88. https://doi.org/10.1186/s12931-019-1063-5
Article
PubMed
PubMed Central
Google Scholar
Weichelt U, Cay R, Schmitz T et al (2013) Prevention of hyperoxia-mediated pulmonary inflammation in neonatal rats by caffeine. Eur Respir J 41:966–973. https://doi.org/10.1183/09031936.00012412
Article
CAS
PubMed
Google Scholar
Kim SK, Romero R, Chaiworapongsa T et al (2009) Evidence of changes in the immunophenotype and metabolic characteristics (intracellular reactive oxygen radicals) of fetal, but not maternal, monocytes and granulocytes in the fetal inflammatory response syndrome. J Perinat Med 37:543–552. https://doi.org/10.1515/JPM.2009.106
Article
PubMed
PubMed Central
Google Scholar
Banks BA, Ischiropoulos H, McClelland M et al (1998) Plasma 3-nitrotyrosine is elevated in premature infants who develop bronchopulmonary dysplasia. Pediatrics 101:870–874. https://doi.org/10.1542/peds.101.5.870
Article
CAS
PubMed
Google Scholar
Behnke J, Dippel CM, Choi Y et al (2021) Oxygen toxicity to the immature lung-part II: the unmet clinical need for causal therapy. Int J Mol Sci 22. https://doi.org/10.3390/ijms221910694
Huang J, Zhang L, Tang J et al (2019) Human milk as a protective factor for bronchopulmonary dysplasia: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 104:F128–F136. https://doi.org/10.1136/archdischild-2017-314205
Article
PubMed
Google Scholar
Fajardo C, Alshaikh B, Harabor A (2019) Prolonged use of antibiotics after birth is associated with increased morbidity in preterm infants with negative cultures. J Matern Fetal Neonatal Med 32:4060–4066. https://doi.org/10.1080/14767058.2018.1481042
Article
PubMed
Google Scholar
Cantey JB, Huffman LW, Subramanian A et al (2017) Antibiotic exposure and risk for death or bronchopulmonary dysplasia in very low birth weight infants. J Pediatr 181:289–293.e1. https://doi.org/10.1016/j.jpeds.2016.11.002
Article
PubMed
Google Scholar
Kim CS, Grady N, Derrick M et al (2021) Effect of antibiotic use within first 48 hours of life on the preterm infant microbiome: a randomized clinical trial. JAMA Pediatr 175:303–305. https://doi.org/10.1001/jamapediatrics.2020.4916
Article
PubMed
Google Scholar
Dolma K, Freeman AE, Rezonzew G et al (2020) Effects of hyperoxia on alveolar and pulmonary vascular development in germ-free mice. Am J Phys Lung Cell Mol Phys 318:L421–L428. https://doi.org/10.1152/ajplung.00316.2019
Article
CAS
Google Scholar
Willis KA, Siefker DT, Aziz MM et al (2020) Perinatal maternal antibiotic exposure augments lung injury in offspring in experimental bronchopulmonary dysplasia. Am J Phys Lung Cell Mol Phys 318:L407–L418. https://doi.org/10.1152/ajplung.00561.2018
Article
CAS
Google Scholar
Villamor-Martínez E, Pierro M, Cavallaro G et al (2017) Probiotic supplementation in preterm infants does not affect the risk of bronchopulmonary dysplasia: a meta-analysis of randomized controlled trials. Nutrients 9. https://doi.org/10.3390/nu9111197
Vuong HE, Pronovost GN, Williams DW et al (2020) The maternal microbiome modulates fetal neurodevelopment in mice. Nature 586:281–286. https://doi.org/10.1038/s41586-020-2745-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Dermyshi E, Wang Y, Yan C et al (2017) The "golden age" of probiotics: a systematic review and meta-analysis of randomized and observational studies in preterm infants. Neonatology 112:9–23. https://doi.org/10.1159/000454668
Article
CAS
PubMed
Google Scholar
González-Luis GE, van Westering-Kroon E, Villamor-Martinez E et al (2020) Tobacco Smoking During Pregnancy Is Associated With Increased Risk of Moderate/Severe Bronchopulmonary Dysplasia: A Systematic Review and Meta-Analysis. Front Pediatr 8:160. https://doi.org/10.3389/fped.2020.00160
Article
PubMed
PubMed Central
Google Scholar
Persson M, Shah PS, Rusconi F et al (2018) Association of maternal diabetes with neonatal outcomes of very preterm and very low-birth-weight infants: an international cohort study. JAMA Pediatr 172:867–875. https://doi.org/10.1001/jamapediatrics.2018.1811
Article
PubMed
PubMed Central
Google Scholar
McEvoy CT, Shorey-Kendrick LE, Milner K et al (2020) Vitamin C to pregnant smokers persistently improves infant airway function to 12 months of age: a randomised trial. Eur Respir J. https://doi.org/10.1183/13993003.02208-2019
McEvoy CT, Schilling D, Clay N et al (2014) Vitamin C supplementation for pregnant smoking women and pulmonary function in their newborn infants: a randomized clinical trial. JAMA 311:2074–2082. https://doi.org/10.1001/jama.2014.5217
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallace B, Peisl A, Seedorf G et al (2018) Anti-sFlt-1 Therapy preserves lung alveolar and vascular growth in antenatal models of bronchopulmonary dysplasia. Am J Respir Crit Care Med 197:776–787. https://doi.org/10.1164/rccm.201707-1371OC
Article
CAS
PubMed
PubMed Central
Google Scholar
Morty RE (2020) Using Experimental Models to Identify Pathogenic Pathways and Putative Disease Management Targets in Bronchopulmonary Dysplasia. Neonatology 117:233–239. https://doi.org/10.1159/000506989
Article
PubMed
Google Scholar
Nold MF, Mangan NE, Rudloff I et al (2013) Interleukin-1 receptor antagonist prevents murine bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia. Proc Natl Acad Sci U S A 110:14384–14389. https://doi.org/10.1073/pnas.1306859110
Article
PubMed
PubMed Central
Google Scholar
Dapaah-Siakwan F, Zambrano R, Luo S et al (2019) Caspase-1 inhibition attenuates hyperoxia-induced lung and brain injury in neonatal mice. Am J Respir Cell Mol Biol 61:341–354. https://doi.org/10.1165/rcmb.2018-0192OC
Article
CAS
PubMed
Google Scholar
Hummler JK, Dapaah-Siakwan F, Vaidya R et al (2017) Inhibition of Rac1 signaling downregulates inflammasome activation and attenuates lung injury in neonatal rats Exposed to Hyperoxia. Neonatology 111:280–288. https://doi.org/10.1159/000450918
Article
CAS
PubMed
Google Scholar
Watterberg KL, Carmichael DF, Gerdes JS et al (1994) Secretory leukocyte protease inhibitor and lung inflammation in developing bronchopulmonary dysplasia. J Pediatr 125:264–269. https://doi.org/10.1016/S0022-3476(94)70209-8
Article
CAS
PubMed
Google Scholar
Hilgendorff A, Parai K, Ertsey R et al (2012) Neonatal mice genetically modified to express the elastase inhibitor elafin are protected against the adverse effects of mechanical ventilation on lung growth. Am J Phys Lung Cell Mol Phys 303:L215–L227. https://doi.org/10.1152/ajplung.00405.201
Article
CAS
Google Scholar
Hilgendorff A, Parai K, Ertsey R et al (2011) Inhibiting lung elastase activity enables lung growth in mechanically ventilated newborn mice. Am J Respir Crit Care Med 184:537–546. https://doi.org/10.1164/rccm.201012-2010OC
Article
CAS
PubMed
PubMed Central
Google Scholar
Han W, Li X, Zhang H et al (2017) Recombinant human elafin promotes alveologenesis in newborn mice exposed to chronic hyperoxia. Int J Biochem Cell Biol 92:173–182. https://doi.org/10.1016/j.biocel.2017.08.004
Article
CAS
PubMed
Google Scholar
Augustine S, Cheng W, Avey MT et al (2020) Are all stem cells equal? Systematic review, evidence map, and meta-analyses of preclinical stem cell-based therapies for bronchopulmonary dysplasia. Stem Cells Transl Med 9:158–168. https://doi.org/10.1002/sctm.19-0193
Article
PubMed
Google Scholar
O'Reilly M, Möbius MA, Vadivel A et al (2020) Late rescue therapy with cord-derived mesenchymal stromal cells for established lung injury in experimental bronchopulmonary dysplasia. Stem Cells Dev 29:364–371. https://doi.org/10.1089/scd.2019.0116
Article
CAS
PubMed
Google Scholar
Willis GR, Reis M, Gheinani AH et al (2021) Extracellular vesicles protect the neonatal lung from hyperoxic injury through the epigenetic and transcriptomic reprogramming of myeloid cells. Am J Respir Crit Care Med 204:1418–1432. https://doi.org/10.1164/rccm.202102-0329OC
Article
CAS
PubMed
Google Scholar
Ahn SY, Chang YS, Lee MH et al (2021) Stem cells for bronchopulmonary dysplasia in preterm infants: A randomized controlled phase II trial. Stem Cells Transl Med 10:1129–1137. https://doi.org/10.1002/sctm.20-0330
Article
PubMed
PubMed Central
Google Scholar
Chang YS, Ahn SY, Yoo HS et al (2014) Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr 164:966–972.e6. https://doi.org/10.1016/j.jpeds.2013.12.011
Article
PubMed
Google Scholar
Pierro M, Thébaud B, Soll R (2017) Mesenchymal stem cells for the prevention and treatment of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev 11:CD011932. https://doi.org/10.1002/14651858.CD011932.pub2
Article
PubMed
Google Scholar
Meyer S, Gortner L (2014) Early postnatal additional high-dose oral vitamin A supplementation versus placebo for 28 days for preventing bronchopulmonary dysplasia or death in extremely low birth weight infants. Neonatology 105:182–188. https://doi.org/10.1159/000357212
Article
CAS
PubMed
Google Scholar
Tyson JE, Wright LL, Oh W et al (1999) Vitamin A supplementation for extremely-low-birth-weight infants. National Institute of Child Health and Human Development Neonatal Research Network. N Engl J Med 340:1962–1968. https://doi.org/10.1056/NEJM199906243402505
Article
CAS
PubMed
Google Scholar
Rakshasbhuvankar AA, Simmer K, Patole SK et al (2021) Enteral vitamin A for reducing severity of bronchopulmonary dysplasia: a randomized trial. Pediatrics 147. https://doi.org/10.1542/peds.2020-009985
Göpel W, Kribs A, Härtel C et al (2015) Less invasive surfactant administration is associated with improved pulmonary outcomes in spontaneously breathing preterm infants. Acta Paediatr 104:241–246. https://doi.org/10.1111/apa.12883
Article
CAS
PubMed
Google Scholar
Isayama T, Iwami H, McDonald S et al (2016) Association of noninvasive ventilation strategies with mortality and bronchopulmonary dysplasia among preterm infants: a systematic review and meta-analysis. JAMA 316:611–624. https://doi.org/10.1001/jama.2016.10708
Article
PubMed
Google Scholar
Waitz M, Engel C, Schloesser R et al (2020) Application of two different nasal CPAP levels for the treatment of respiratory distress syndrome in preterm infants-"The OPTTIMMAL-Trial"-Optimizing PEEP To The IMMAture Lungs: study protocol of a randomized controlled trial. Trials 21:822. https://doi.org/10.1186/s13063-020-04660-0
Article
CAS
PubMed
PubMed Central
Google Scholar
Maiwald CA, Niemarkt HJ, Poets CF et al (2019) Effects of closed-loop automatic control of the inspiratory fraction of oxygen (FiO2-C) on outcome of extremely preterm infants - study protocol of a randomized controlled parallel group multicenter trial for safety and efficacy. BMC Pediatr 19:363. https://doi.org/10.1186/s12887-019-1735-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Pichler G, Baumgartner S, Biermayr M et al (2019) Cerebral regional tissue oxygen saturation to guide oxygen delivery in preterm neonates during immediate transition after birth (COSGOD III): an investigator-initiated, randomized, multi-center, multi-national, clinical trial on additional cerebral tissue oxygen saturation monitoring combined with defined treatment guidelines versus standard monitoring and treatment as usual in premature infants during immediate transition: study protocol for a randomized controlled trial. Trials 20:178. https://doi.org/10.1186/s13063-019-3258-y
Article
PubMed
PubMed Central
Google Scholar
Hansen ML, Pellicer A, Gluud C et al (2019) Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants: a protocol for the SafeBoosC randomised clinical phase III trial. Trials 20:811. https://doi.org/10.1186/s13063-019-3955-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Jensen EA, Whyte RK, Schmidt B et al (2021) Association between Intermittent hypoxemia and severe bronchopulmonary dysplasia in preterm infants. Am J Respir Crit Care Med 204:1192–1199. https://doi.org/10.1164/rccm.202105-1150OC
Article
CAS
PubMed
Google Scholar
Dennery PA, Di Fiore JM, Ambalavanan N et al (2019) Pre-Vent: the prematurity-related ventilatory control study. Pediatr Res 85:769–776. https://doi.org/10.1038/s41390-019-0317-8
Article
PubMed
PubMed Central
Google Scholar