Fitzgibbons SC, Ching Y, Yu D, Carpenter J, Kenny M, Weldon C, Lillehei C, Valim C, Horbar JD, Jaksic T (2009) Mortality of necrotizing enterocolitis expressed by birth weight categories. J Pediatr Surg 44:1072–1075. https://doi.org/10.1016/j.jpedsurg.2009.02.013 discussion 1075-1076
Article
PubMed
Google Scholar
Velazco CS, Fullerton BS, Hong CR, Morrow KA, Edwards EM, Soll RF, Jaksic T, Horbar JD, Modi BP (2017) Morbidity and mortality among “big” babies who develop necrotizing enterocolitis: a prospective multicenter cohort analysis. J Pediatr Surg. https://doi.org/10.1016/j.jpedsurg.2017.10.028
Giannone PJ, Luce WA, Nankervis CA, Hoffman TM, Wold LE (2008) Necrotizing enterocolitis in neonates with congenital heart disease. Life Sci 82:341–347. https://doi.org/10.1016/j.lfs.2007.09.036
Article
CAS
PubMed
Google Scholar
Maheshwari A (2015) Immunologic and hematological abnormalities in necrotizing enterocolitis. Clin Perinatol 42:567–585. https://doi.org/10.1016/j.clp.2015.04.014
Article
PubMed
PubMed Central
Google Scholar
Denning TL, Bhatia AM, Kane AF, Patel RM, Denning PW (2017) Pathogenesis of NEC: role of the innate and adaptive immune response. Semin Perinatol 41:15–28. https://doi.org/10.1053/j.semperi.2016.09.014
Article
PubMed
Google Scholar
Giannone PJ, Schanbacher BL, Bauer JA, Reber KM (2006) Effects of prenatal lipopolysaccharide exposure on epithelial development and function in newborn rat intestine. J Pediatr Gastroenterol Nutr 43:284–290. https://doi.org/10.1097/01.mpg.0000232572.56397.d6
Article
CAS
PubMed
Google Scholar
Hodzic Z, Bolock AM, Good M (2017) The role of mucosal immunity in the pathogenesis of necrotizing enterocolitis. Front Pediatr 5:40. https://doi.org/10.3389/fped.2017.00040
Article
PubMed
PubMed Central
Google Scholar
Siano E, Lauriti G, Ceccanti S, Zani A (2019) Cardiogenic necrotizing enterocolitis: a clinically distinct entity from classical necrotizing enterocolitis. Eur J Pediatr Surg 29:14–22. https://doi.org/10.1055/s-0038-1668144
Article
PubMed
Google Scholar
Bubberman JM, van Zoonen A, Bruggink JLM, van der Heide M, Berger RMF, Bos AF, Kooi EMW, Hulscher JBF (2018) Necrotizing enterocolitis associated with congenital heart disease: a different entity? J Pediatr Surg. https://doi.org/10.1016/j.jpedsurg.2018.11.012
Kessler U, Hau EM, Kordasz M, Haefeli S, Tsai C, Klimek P, Cholewa D, Nelle M, Pavlovic M, Berger S (2018) Congenital heart disease increases mortality in neonates with necrotizing enterocolitis. Front Pediatr 6:312. https://doi.org/10.3389/fped.2018.00312
Article
PubMed
PubMed Central
Google Scholar
Diez S, Tielesch L, Weiss C, Halbfass J, Müller H, Besendörfer M (2020) Clinical characteristics of necrotizing enterocolitis in preterm patients with and without persistent ductus arteriosus and in patients with congenital heart disease. Front Pediatr 8:257. https://doi.org/10.3389/fped.2020.00257
Article
PubMed
PubMed Central
Google Scholar
Neu J (2020) Necrotizing enterocolitis: the future. Neonatology 117:240–244. https://doi.org/10.1159/000506866
Article
PubMed
Google Scholar
Klinke M, Wiskemann H, Bay B, Schäfer HJ, Pagerols Raluy L, Reinshagen K, Vincent D, Boettcher M (2020) Cardiac and inflammatory necrotizing enterocolitis in newborns are not the same entity. Front Pediatr 8:593926. https://doi.org/10.3389/fped.2020.593926
Article
PubMed
Google Scholar
Mollenhauer J, Herbertz S, Holmskov U, Tolnay M, Krebs I, Merlo A, Schrøder HD, Maier D, Breitling F, Wiemann S, Gröne HJ, Poustka A (2000) DMBT1 encodes a protein involved in the immune defense and in epithelial differentiation and is highly unstable in cancer. Cancer Res 60:1704–1710
CAS
PubMed
Google Scholar
Madsen J, Tornøe I, Nielsen O, Lausen M, Krebs I, Mollenhauer J, Kollender G, Poustka A, Skjødt K, Holmskov U (2003) CRP-ductin, the mouse homologue of gp-340/deleted in malignant brain tumors 1 (DMBT1), binds gram-positive and gram-negative bacteria and interacts with lung surfactant protein D. Eur J Immunol 33:2327–2336. https://doi.org/10.1002/eji.200323972
Article
CAS
PubMed
Google Scholar
Müller H, End C, Weiss C, Renner M, Bhandiwad A, Helmke BM, Gassler N, Hafner M, Poustka A, Mollenhauer J, Poeschl J (2008) Respiratory deleted in malignant brain tumours 1 (DMBT1) levels increase during lung maturation and infection. Clin Exp Immunol 151:123–129. https://doi.org/10.1111/j.1365-2249.2007.03528.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Muller H, Renner M, Helmke BM, Mollenhauer J, Felderhoff-Muser U (2016) Elevated DMBT1 levels in neonatal gastrointestinal diseases. Histochem Cell Biol 145:227–237. https://doi.org/10.1007/s00418-015-1381-8
Article
CAS
PubMed
Google Scholar
Müller H, Schmiedl A, Weiss C, Ai M, Jung S, Renner M (2020) DMBT1 is upregulated in lung epithelial cells after hypoxia and changes surfactant ultrastructure. Pediatr Pulmonol. https://doi.org/10.1002/ppul.25018
Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, Brotherton T (1978) Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg 187:1–7. https://doi.org/10.1097/00000658-197801000-00001
Article
CAS
PubMed
PubMed Central
Google Scholar
AWMF-Guidelines (2017) Nekrotisierende Enterokolitis. AWMF-Leitlinien-Register Nr. 024/009. Site visited 01/01/21
Müller H, End C, Renner M, Helmke BM, Gassler N, Weiss C, Hartl D, Griese M, Hafner M, Poustka A, Mollenhauer J, Poeschl J (2007) Deleted in malignant brain tumors 1 (DMBT1) is present in hyaline membranes and modulates surface tension of surfactant. Respir Res 8:69. https://doi.org/10.1186/1465-9921-8-69
Article
CAS
PubMed
PubMed Central
Google Scholar
Muller H, Weiss C, Renner M, Felderhoff-Muser U, Mollenhauer J (2017) DMBT1 promotes basal and meconium-induced nitric oxide production in human lung epithelial cells in vitro. Histochem Cell Biol 147:389–397. https://doi.org/10.1007/s00418-016-1493-9
Article
CAS
PubMed
Google Scholar
Renner M, Bergmann G, Krebs I, End C, Lyer S, Hilberg F, Helmke B, Gassler N, Autschbach F, Bikker F, Strobel-Freidekind O, Gronert-Sum S, Benner A, Blaich S, Wittig R, Hudler M, Ligtenberg AJ, Madsen J, Holmskov U, Annese V, Latiano A, Schirmacher P, Amerongen AVN, D’Amato M, Kioschis P, Hafner M, Poustka A, Mollenhauer J (2007) DMBT1 confers mucosal protection in vivo and a deletion variant is associated with Crohn’s disease. Gastroenterology 133:1499–1509. https://doi.org/10.1053/j.gastro.2007.08.007
Article
CAS
PubMed
Google Scholar
Madsen J, Mollenhauer J, Holmskov U (2010) Review: Gp-340/DMBT1 in mucosal innate immunity. Innate Immun 16:160–167. https://doi.org/10.1177/1753425910368447
Article
CAS
PubMed
Google Scholar
Bikker FJ, Ligtenberg AJ, End C, Renner M, Blaich S, Lyer S, Wittig R, van’t Hof W, Veerman EC, Nazmi K, de Blieck-Hogervorst JM, Kioschis P, Nieuw Amerongen AV, Poustka A, Mollenhauer J (2004) Bacteria binding by DMBT1/SAG/gp-340 is confined to the VEVLXXXXW motif in its scavenger receptor cysteine-rich domains. J Biol Chem 279:47699–47703. https://doi.org/10.1074/jbc.M406095200
Article
CAS
PubMed
Google Scholar
Braegger CP, Spencer J, MacDonald TT (1992) Ontogenetic aspects of the intestinal immune system in man. Int J Clin Lab Res 22:1–4
Article
CAS
Google Scholar
MacDonald TT (1996) Accessory cells in the human gastrointestinal tract. Histopathology 29:89–92. https://doi.org/10.1046/j.1365-2559.1996.d01-488.x
Article
CAS
PubMed
Google Scholar
Rognum TO, Thrane S, Stoltenberg L, Vege A, Brandtzaeg P (1992) Development of intestinal mucosal immunity in fetal life and the first postnatal months. Pediatr Res 32:145–149. https://doi.org/10.1203/00006450-199208000-00003
Article
CAS
PubMed
Google Scholar
MohanKumar K, Kaza N, Jagadeeswaran R, Garzon SA, Bansal A, Kurundkar AR, Namachivayam K, Remon JI, Bandepalli CR, Feng X, Weitkamp JH, Maheshwari A (2012) Gut mucosal injury in neonates is marked by macrophage infiltration in contrast to pleomorphic infiltrates in adult: evidence from an animal model. Am J Physiol Gastrointest Liver Physiol 303:G93–G102. https://doi.org/10.1152/ajpgi.00016.2012
Article
CAS
PubMed
PubMed Central
Google Scholar
Maheshwari A, Kurundkar AR, Shaik SS, Kelly DR, Hartman Y, Zhang W, Dimmitt R, Saeed S, Randolph DA, Aprahamian C, Datta G, Ohls RK (2009) Epithelial cells in fetal intestine produce chemerin to recruit macrophages. Am J Physiol Gastrointest Liver Physiol 297:G1–g10. https://doi.org/10.1152/ajpgi.90730.2008
Article
CAS
PubMed
PubMed Central
Google Scholar
Smythies LE, Maheshwari A, Clements R, Eckhoff D, Novak L, Vu HL, Mosteller-Barnum LM, Sellers M, Smith PD (2006) Mucosal IL-8 and TGF-beta recruit blood monocytes: evidence for cross-talk between the lamina propria stroma and myeloid cells. J Leukoc Biol 80:492–499. https://doi.org/10.1189/jlb.1005566
Article
CAS
PubMed
Google Scholar
Djordjevic D, Rondovic G, Surbatovic M, Stanojevic I, Udovicic I, Andjelic T, Zeba S, Milosavljevic S, Stankovic N, Abazovic D, Jevdjic J, Vojvodic D (2018) Neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and mean platelet volume-to-platelet count ratio as biomarkers in critically ill and injured patients: which ratio to choose to predict outcome and nature of bacteremia? Mediators Inflamm 2018:3758068. https://doi.org/10.1155/2018/3758068
Article
CAS
PubMed
PubMed Central
Google Scholar
Forget P, Khalifa C, Defour JP, Latinne D, Van Pel MC, De Kock M (2017) What is the normal value of the neutrophil-to-lymphocyte ratio? BMC Res Notes 10:12. https://doi.org/10.1186/s13104-016-2335-5
Article
PubMed
PubMed Central
Google Scholar
Yang Y, Cao ZL, Zhou XY, Chen XQ, Pan JJ, Cheng R (2019) Does neutrophil/lymphocyte ratio have good diagnostic value in neonatal necrotizing colitis? J Matern Fetal Neonatal Med 32:3026–3033. https://doi.org/10.1080/14767058.2018.1455182
Article
PubMed
Google Scholar
Cho SX, Berger PJ, Nold-Petry CA, Nold MF (2016) The immunological landscape in necrotising enterocolitis. Expert Rev Mol Med 18:e12. https://doi.org/10.1017/erm.2016.13
Article
CAS
PubMed
PubMed Central
Google Scholar
Müller H, Nagel C, Weiss C, Mollenhauer J, Poeschl J (2015) Deleted in malignant brain tumors 1 (DMBT1) elicits increased VEGF and decreased IL-6 production in type II lung epithelial cells. BMC Pulm Med 15:32. https://doi.org/10.1186/s12890-015-0027-x
Article
CAS
PubMed
PubMed Central
Google Scholar