Martin A, David V, Quarles LD (2012) Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev 92(1):131–155. https://doi.org/10.1152/physrev.00002.2011
Article
CAS
PubMed
Google Scholar
Lu X, Hu MC (2017) Klotho/FGF23 axis in chronic kidney disease and cardiovascular disease. Kidney Dis (Basel) 3(1):15–23. https://doi.org/10.1159/000452880
Article
Google Scholar
Takashi Y, Kosako H, Sawatsubashi S, Kinoshita Y, Ito N, Tsoumpra MK, Nangaku M, Abe M, Matsuhisa M, Kato S, Matsumoto T, Fukumoto S (2019) Activation of unligated FGF receptor by extracellular phosphate potentiates proteolytic protection of FGF23 by its O-glycosylation. Proc Natl Acad Sci U S A 116(23):11418–11427. https://doi.org/10.1073/pnas.1815166116
Article
CAS
PubMed
PubMed Central
Google Scholar
Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T (2010) PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Ren Physiol 299(4):F882–F889. https://doi.org/10.1152/ajprenal.00360.2010
Article
CAS
Google Scholar
Sirajudeen S, Shah I, Al Menhali A (2019) A narrative role of vitamin D and its receptor: with current evidence on the gastric tissues. Int J Mol Sci 20(15):3832. https://doi.org/10.3390/ijms20153832
Article
PubMed Central
Google Scholar
Dussold C, Gerber C, White S, Wang X, Qi L, Francis C, Capella M, Courbon G, Wang J, Li C, Feng JQ, Isakova T, Wolf M, David V, Martin A (2019) DMP1 prevents osteocyte alterations, FGF23 elevation and left ventricular hypertrophy in mice with chronic kidney disease. Bone Res 7(1):12. https://doi.org/10.1038/s41413-019-0051-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St. John Sutton M, Ojo A, Gadegbeku C, di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-o M, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121(11):4393–4408. https://doi.org/10.1172/JCI46122
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsui I, Oka T, Kusunoki Y, Mori D, Hashimoto N, Matsumoto A, Shimada K, Yamaguchi S, Kubota K, Yonemoto S, Higo T, Sakaguchi Y, Takabatake Y, Hamano T, Isaka Y (2018) Cardiac hypertrophy elevates serum levels of fibroblast growth factor 23. Kidney Int 1(1):60–71. https://doi.org/10.1016/j.kint.2018.02.018
Article
CAS
Google Scholar
Ratsma DMA, Zilikens MC, van der Eerden BCJ (2021) Upstream regulators of fibroblast growth factor 23. Front Endocrinol (Lausanne) 12:588096. https://doi.org/10.3389/fendo.2021.588096
Article
Google Scholar
David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V, Zumbrennen-Bullough KB, Sun CC, Lin HY, Babitt JL, Wolf M (2016) Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int 89(1):135–146. https://doi.org/10.1038/ki.2015.290
Article
CAS
PubMed
PubMed Central
Google Scholar
Goetz R, Nakada Y, Hu MC, Kurosu H, Wang L, Nakatani T, Shi M, Eliseenkova AV, Razzaque MS, Moe OW, Kuro-o M, Mohammadi M (2010) Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc Natl Acad Sci U S A 107(1):407–412. https://doi.org/10.1073/pnas.0902006107
Article
PubMed
Google Scholar
Fliser D (2007) Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the mild to moderate kidney disease (MMKD) study. J Am Soc Nephrol 18(9):2600–2608. https://doi.org/10.1681/ASN.2006080936
Article
CAS
PubMed
Google Scholar
Rebholz CM, Grams ME, Coresh J, Selvin E, Inker LA, Levey AS, Kimmel PL, Vasan RS, Eckfeldt JH, Feldman HI, Hsu CY, Lutsey PL, for the Chronic Kidney Disease Biomarkers Consortium (2015) Serum fibroblast growth factor-23 is associated with incident kidney disease. J Am Soc Nephrol 26(1):192–200. https://doi.org/10.1681/ASN.2014020218
Article
CAS
PubMed
Google Scholar
Portale AA, Wolf MS, Messinger S, Perwad F, Jüppner H, Warady BA, Furth SL, Salusky IB (2016) Fibroblast growth factor 23 and risk of CKD progression in children. Clin J Am Soc Nephrol 11(11):1989–1998. https://doi.org/10.2215/CJN.02110216
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai B, David V, Martin A, Huang J, Li H, Jiao Y, Gu W, Quarles LD (2012) A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS One 7(9):e44161. https://doi.org/10.1371/journal.pone.0044161
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrukhova O, Schlüter C, Bergow C et al (2018) Augmented fibroblast growth factor-23 secretion in bone locally contributes to impaired bone mineralization in chronic kidney disease in mice. Front Endocrinol 9:311. https://doi.org/10.3389/fendo.2018.00311
Article
Google Scholar
Pereira RC, Salusky IB, Roschger P, Klaushofer K, Yadin O, Freymiller EG, Bowen R, Delany AM, Fratzl-Zelman N, Wesseling-Perry K (2018) Impaired osteocyte maturation in the pathogenesis of renal osteodystrophy. Kidney Int 94(5):P1002–P1012. https://doi.org/10.1016/j.kint.2018.08.011
Article
CAS
Google Scholar
Kouri AM, Rheault MN (2021) Cardiovascular disease in children with chronic kidney disease. Curr Opin Nephrol Hypertens 30(2):231–236. https://doi.org/10.1097/MNH.0000000000000684
Article
PubMed
Google Scholar
Schaefer F, Doyon A, Azukaitis K, Bayazit A, Canpolat N, Duzova A, Niemirska A, Sözeri B, Thurn D, Anarat A, Ranchin B, Litwin M, Caliskan S, Candan C, Baskin E, Yilmaz E, Mir S, Kirchner M, Sander A, Haffner D, Melk A, Wühl E, Shroff R, Querfeld U, 4C Study Consortium (2017) Cardiovascular phenotypes in children with CKD: the 4C study. Clin J Am Soc Nephrol 12(1):19–28. https://doi.org/10.2215/CJN.01090216
Article
PubMed
Google Scholar
Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, Li J, Shehadeh LA, Hare JM, David V, Martin A, Fornoni A, di Marco GS, Kentrup D, Reuter S, Mayer AB, Pavenstädt H, Stypmann J, Kuhn C, Hille S, Frey N, Leifheit-Nestler M, Richter B, Haffner D, Abraham R, Bange J, Sperl B, Ullrich A, Brand M, Wolf M, Faul C (2015) Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab 22(6):1020–1032. https://doi.org/10.1016/j.cmet.2015.09.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Leifheit-Nestler M, Grosse Siemer R, Flasbart K et al (2016) Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol Dial Transplant 31(7):1088–1099. https://doi.org/10.1093/ndt/gfv421
Article
CAS
PubMed
Google Scholar
Sinha MD, Turner C, Booth CJ, Waller S, Rasmussen P, Goldsmith DJA, Simpson JM (2015) Relationship of FGF23 to indexed left ventricular mass in children with non-dialysis stages of chronic kidney disease. Pediatr Nephrol 30(10):1843–1852. https://doi.org/10.1007/s00467-015-3125-3
Article
PubMed
Google Scholar
Mitsnefes MM, Betoko A, Schneider MF, Salusky IB, Wolf MS, Jüppner H, Warady BA, Furth SL, Portale AA (2018) FGF23 and left ventricular hypertrophy in children with CKD. Clin J Am Soc Nephrol 3(1):45–52. https://doi.org/10.2215/CJN.02110217
Article
Google Scholar
Freundlich M, Gamba G, Rodriguez-Iturbe B (2020) Fibroblast growth factor 23-Klotho and hypertension: experimental and clinical mechanisms. Pediatr Nephrol 23:1–16
Google Scholar
Yamada S, Giachelli CM (2017) Vascular calcification in CKD-MBD: role for phosphate, FGF23, and Klotho. Bone 100:87–93. https://doi.org/10.1016/j.bone.2016.11.012
Article
CAS
PubMed
Google Scholar
Su GE, Suer O, Carpenter TO et al (2013) Heart failure in hypophosphatemic rickets: complications from high-dose phosphate therapy. Endocr Pract 19:e8–e11
Article
Google Scholar
Moltz KC, Friedman AH, Nehgme RA, Kleinman CS, Carpenter TO (2001) Ectopic cardiac calcification associated with hyperparathyroidism in a boy with hypophosphatemic rickets. Curr Opin Pediatr 13(4):373–375. https://doi.org/10.1097/00008480-200108000-00015
Article
CAS
PubMed
Google Scholar
Ferreira CR, Kintzinger K, Hackbarth ME, Botschen U, Nitschke Y, Mughal MZ, Baujat G, Schnabel D, Yuen E, Gahl WA, Gafni RI, Liu Q, Huertas P, Khursigara G, Rutsch F (2021) Ectopic calcification and hypophosphatemic rickets: natural history of ENPP1 and ABCC6 deficiencies. J Bone Miner Res. https://doi.org/10.1002/jbmr.4418 Online ahead of print
Harshman LV, Hooper SR (2020) The brain in pediatric chronic kidney disease – the intersection of cognition, neuroimaging, and clinical biomarkers. Pediatr Nephrol 35(12):2221–2229. https://doi.org/10.1007/s00467-019-04417-1
Article
PubMed
Google Scholar
Laszczyk AM, Nettles D, Pollock TA, Fox S, Garcia ML, Wang J, Quarles LD, King GD (2019) FGF-23 deficiency impairs hippocampal-dependent cognitive function. eNeuro 6(2):e0469–18.2019. https://doi.org/10.1523/ENEURO.0469-18.2019
Article
CAS
Google Scholar
Yokoyama JS, Matsuda-Abedini M, Denburg MR, Kumar J, Warady BA, Furth SL, Hooper SR, Portale AA, Perwad F (2020) Association between chronic kidney disease-mineral bone disease (CKD-MBD) and cognition in children: chronic kidney disease in children (CKiD) study. Kidney Med 2(4):398–406. https://doi.org/10.1016/j.xkme.2020.03.005
Article
PubMed
PubMed Central
Google Scholar
Zhu B, Jin LN, Shen JQ, Liu JF, Jiang RY, Yang L, Zhang J, Luo AL, Miao LY, Yang C (2018) Differential expression of serum biomarkers in hemodialysis patients with mild cognitive decline: a prospective single-center cohort study. Sci Rep 8(1):12250. https://doi.org/10.1038/s41598-018-29760-5
Article
CAS
PubMed
PubMed Central
Google Scholar