Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C (2011) Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15:1239–1253. doi:10.1111/j.1582-4934.2011.01258.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408. doi:10.1016/j.cell.2012.01.021
Article
CAS
PubMed
PubMed Central
Google Scholar
Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819. doi:10.1113/expphysiol.2006.033506
Article
CAS
PubMed
Google Scholar
Taylor CT, Colgan SP (2007) Hypoxia and gastrointestinal disease. J Mol Med 85:1295–1300. doi:10.1007/s00109-007-0277-z
Article
PubMed
Google Scholar
Fisher EM, Khan M, Salisbury R, Kuppusamy P (2013) Noninvasive monitoring of small intestinal oxygen in a rat model of chronic mesenteric ischemia. Cell Biochem Biophys 67:451–9. doi:10.1007/s12013-013-9611-y
Article
CAS
PubMed
Google Scholar
Zeitouni NE, Fandrey J, Naim HY, von Köckritz-Blickwede M (2015) Measuring oxygen levels in Caco-2 cultures. Hypoxia 3:53–66. doi:10.2147/HP.S85625
Google Scholar
Glover LE, Colgan SP (2011) Hypoxia and metabolic factors that influence inflammatory bowel disease pathogenesis. Gastroenterology 140:1748–1755. doi:10.1053/j.gastro.2011.01.056
Article
CAS
PubMed
PubMed Central
Google Scholar
Colgan SP, Curtis VF, Campbell EL (2013) The inflammatory tissue microenvironment in IBD. Inflamm Bowel Dis 19:2238–44. doi:10.1097/MIB.0b013e31828dcaaf
Article
PubMed
PubMed Central
Google Scholar
Colgan SP, Taylor CT (2010) Hypoxia: an alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol 7:281–7. doi:10.1038/nrgastro.2010.39
Article
PubMed
PubMed Central
Google Scholar
Campbell EL, Bruyninckx WJ, Kelly CJ, Glover LE, McNamee EN, Bowers BE, Bayless AJ, Scully M, Saeedi BJ, Golden-Mason L, Ehrentraut SF, Curtis VF, Burgess A, Garvey JF, Sorensen A, Nemenoff R, Jedlicka P, Taylor CT, Kominsky DJ, Colgan SP (2014) Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40:66–77. doi:10.1016/j.immuni.2013.11.020
Article
CAS
PubMed
PubMed Central
Google Scholar
Melican K, Boekel J, Månsson LE, Sandoval RM, Tanner G a G a, Källskog Ö, Palm F, Molitoris B a, Richter-Dahlfors A (2008) Bacterial infection-mediated mucosal signalling induces local renal ischaemia as a defence against sepsis. Cell Microbiol 10:1987–1998. doi:10.1111/j.1462-5822.2008.01182.x
Article
CAS
PubMed
Google Scholar
Gorbach SL (1996) Microbiology of the gastrointestinal tract
Google Scholar
Bottone EJ, Gullans CR, Sierra MF (1987) Disease spectrum of Yersinia enterocolitica serogroup 0:3, the predominant cause of human infection in New York City. Contrib Microbiol Immunol 9:56–60
CAS
PubMed
Google Scholar
Neish AS (2002) The gut microflora and intestinal epithelial cells: a continuing dialogue. Microbes Infect 4:309–317. doi:10.1016/S1286-4579(02)01543-5
Article
PubMed
Google Scholar
Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A 90:4304–4308. doi:10.1073/pnas.90.9.4304
Article
CAS
PubMed
PubMed Central
Google Scholar
Greijer A, van der Groep P, Kemming D, Shvarts A, Semenza G, Meijer G, van de Wiel M, Belien J, van Diest P, van der Wall E (2005) Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J Pathol 206:291–304. doi:10.1002/path.1778
Article
CAS
PubMed
Google Scholar
Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454. doi:10.1128/MCB.12.12.5447.Updated
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang GL, Jiang BH, Rue E a, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514. doi:10.1073/pnas.92.12.5510
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee J-W, Bae S-H, Jeong J-W, Kim S-H, Kim K-W (2004) Hypoxia-inducible factor (HIF-1) alpha: its protein stability and biological functions. Exp Mol Med 36:1–12. doi:10.1038/emm.2004.1
Article
PubMed
Google Scholar
Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275. doi:10.1038/20459
Article
CAS
PubMed
Google Scholar
Biddlestone J, Bandarra D, Rocha S (2015) The role of hypoxia in inflammatory disease (review). Int J Mol Med 35:859–869. doi:10.3892/ijmm.2015.2079
CAS
PubMed
PubMed Central
Google Scholar
Balkovetz DF, Katz J (2003) Bacterial invasion by a paracellular route: divide and conquer. Microbes Infect 5:613–619. doi:10.1016/S1286-4579(03)00089-3
Article
PubMed
Google Scholar
Koong a C, Chen EY, Giaccia a J (1994) Hypoxia causes the activation of nuclear factor kappa B through the phosphorylation of I kappa B alpha on tyrosine residues. Cancer Res 54:1425–1430
CAS
PubMed
Google Scholar
Zaph C, Troy AE, Taylor BC, Berman-Booty LD, Guild KJ, Du Y, Yost E a, Gruber AD, May MJ, Greten FR, Eckmann L, Karin M, Artis D (2007) Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature 446:552–556. doi:10.1038/nature05590
Article
CAS
PubMed
Google Scholar
Taylor CT, Cummins EP (2009) The role of NF-κB in hypoxia-induced gene expression. Ann N Y Acad Sci 1177:178–184. doi:10.1111/j.1749-6632.2009.05024.x
Article
CAS
PubMed
Google Scholar
Alonso A, Del Portillo FG (2004) Hijacking of eukaryotic functions by intracellular bacterial pathogens. Int Microbiol 7:181–191
PubMed
Google Scholar
Dos Reis RS, Horn F (2010) Enteropathogenic Escherichia coli, Samonella, Shigella and Yersinia: cellular aspects of host-bacteria interactions in enteric diseases. Gut Pathog 2:8. doi:10.1186/1757-4749-2-8
Article
PubMed
PubMed Central
Google Scholar
Stoodley BJ, Thom BT (1970) Observations on the intestinal carriage of Pseudomonas aeruginosa. J Med Microbiol 3:367–75. doi:10.1099/00222615-3-3-367
Article
CAS
PubMed
Google Scholar
Okuda J, Hayashi N, Okamoto M, Sawada S, Minagawa S, Yano Y, Gotoh N (2010) Translocation of Pseudomonas aeruginosa from the intestinal tract is mediated by the binding of ExoS to an Na, K-ATPase regulator, FXYD3. Infect Immun 78:4511–22. doi:10.1128/IAI.00428-10
Article
CAS
PubMed
PubMed Central
Google Scholar
Lima CBC, Dos Santos SA, De Andrade Junior DR (2013) Hypoxic stress, hepatocytes and CACO-2 viability and susceptibility to Shigella flexneri invasion. Rev Inst Med Trop Sao Paulo 55:341–346. doi:10.1590/S0036-46652013000500008
Article
PubMed
PubMed Central
Google Scholar
Schaible B, McClean S, Selfridge A, Broquet A, Asehnoune K, Taylor CT, Schaffer K (2013) Hypoxia modulates infection of epithelial cells by pseudomonas aeruginosa. PLoS One 8:1–11. doi:10.1371/journal.pone.0056491
Google Scholar
Wells CL, VandeWesterlo E, Jechorek RP, Erlandsen SL (1996) Effect of hypoxia on enterocyte endocytosis of enteric bacteria. Crit Care Med 24:985–91
Article
CAS
PubMed
Google Scholar
Lindner R, Naim HY (2009) Domains in biological membranes. Exp Cell Res 315:2871–2878. doi:10.1016/j.yexcr.2009.07.020
Article
CAS
PubMed
Google Scholar
Lafont F, van der Goot FG (2005) Bacterial invasion via lipid rafts. Cell Microbiol 7:613–620. doi:10.1111/j.1462-5822.2005.00515.x
Article
CAS
PubMed
Google Scholar
Ledoux S, Runembert I, Koumanov K, Michel JB, Trugnan G, Friedlander G (2003) Hypoxia enhances Ecto-5′-nucleotidase activity and cell surface expression in endothelial cells: role of membrane lipids. Circ Res 92:848–855. doi:10.1161/01.RES.0000069022.95401.FE
Article
CAS
PubMed
Google Scholar
Botto L, Beretta E, Bulbarelli A, Rivolta I, Lettiero B, Leone BE, Miserocchi G, Palestini P (2008) Hypoxia-induced modifications in plasma membranes and lipid microdomains in A549 cells and primary human alveolar cells. J Cell Biochem 105:503–513. doi:10.1002/jcb.21850
Article
PubMed
Google Scholar
Isberg RR, Leong JM (1990) Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60:861–871. doi:10.1016/0092-8674(90)90099-Z
Article
CAS
PubMed
Google Scholar
Deuretzbacher A, Czymmeck N, Reimer R, Trulzsch K, Gaus K, Hohenberg H, Heesemann J, Aepfelbacher M, Ruckdeschel K (2009) B1 Integrin-dependent engulfment of Yersinia enterocolitica by macrophages is coupled to the activation of autophagy and suppressed by type III protein secretion. J Immunol 183:5847–5860. doi:10.4049/jimmunol.0804242
Article
CAS
PubMed
Google Scholar
Zeitouni NE, Dersch P, Naim HY, von Köckritz-Blickwede M (2016) Hypoxia decreases invasin-mediated Yersinia enterocolitica internalization into Caco-2 cells. PLoS One 11:e0146103. doi:10.1371/journal.pone.0146103
Article
PubMed
PubMed Central
Google Scholar
Mottet D, Dumont V, Deccache Y, Demazy C, Ninane N, Raes M, Michiels C (2003) Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J Biol Chem 278:31277–85. doi:10.1074/jbc.M300763200
Article
CAS
PubMed
Google Scholar
Brumell JH, Grinstein S (2003) Role of lipid-mediated signal transduction in bacterial internalization. Cell Microbiol 5:287–297. doi:10.1046/j.1462-5822.2003.00273.x
Article
CAS
PubMed
Google Scholar
Bouvry D, Planès C, Malbert-Colas L, Escabasse V, Clerici C (2006) Hypoxia-induced cytoskeleton disruption in alveolar epithelial cells. Am J Respir Cell Mol Biol 35:519–527. doi:10.1165/rcmb.2005-0478OC
Article
CAS
PubMed
Google Scholar
Molitoris BA, Dahl R, Hosford M (1996) Cellular ATP depletion induces disruption of the spectrin cytoskeletal network. Am J Physiol Ren Physiol 271:F790–798
CAS
Google Scholar
Takeuchi A (1967) Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am J Pathol 50:109–136
CAS
PubMed
PubMed Central
Google Scholar
Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–29. doi:10.1038/nrm2199
Article
CAS
PubMed
Google Scholar
Pereira ER, Frudd K, Awad W, Hendershot LM (2014) Endoplasmic reticulum (ER) stress and hypoxia response pathways interact to potentiate hypoxia-inducible factor 1 (HIF-1) transcriptional activity on targets like vascular endothelial growth factor (VEGF). J Biol Chem 289:3352–3364. doi:10.1074/jbc.M113.507194
Article
CAS
PubMed
PubMed Central
Google Scholar
Lodish H, Berk A, Zipursky SL E Al, Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Protein glycosylation in the ER and golgi complex. Mol Cell Biol. doi:http://www.ncbi.nlm.nih.gov/books/NBK21744/. Accessed 10 Nov 2015
Jacob R, Naim HY (2001) Apical membrane proteins are transported in distinct vesicular carriers. Curr Biol 11:1444–1450. doi:10.1016/S0960-9822(01)00446-8
Article
CAS
PubMed
Google Scholar
Kim LT, Ishihara S, Lee CC, Akiyama SK, Yamada KM, Grinnell F (1992) Altered glycosylation and cell surface expression of beta 1 integrin receptors during keratinocyte activation. J Cell Sci 103(Pt 3):743–753
CAS
PubMed
Google Scholar
Aoyama K, Ozaki Y, Nakanishi T, Ogasawara MS, Ikuta K, Aoki K, Blomgren K, Suzumori K (2004) Cleavage of integrin by mu-calpain during hypoxia in human endometrial cells. Am J Reprod Immunol 52:362–369
Article
PubMed
Google Scholar
Zuk A, Bonventre JV, Brown D, Matlin KS (1998) Polarity, integrin, and extracellular matrix dynamics in the postischemic rat kidney. Am J Physiol 275:C711–C731
CAS
PubMed
Google Scholar
Rana MK, Srivastava J, Yang M, Chen CS, Barber DL (2015) Hypoxia increases the abundance but not the assembly of extracellular fibronectin during epithelial cell transdifferentiation. J Cell Sci 128:1083–1089. doi:10.1242/jcs.155036
Article
CAS
PubMed
PubMed Central
Google Scholar
Cossart P, Pizarro-Cerda J, Lecuit M (2003) Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell Biol 13:23–31. doi:10.1016/S0962-8924(02)00006-5
Article
CAS
PubMed
Google Scholar
Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP, Haase VH (2004) Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J Clin Invest 114:1098–1106. doi:10.1172/JCI200421086
Article
CAS
PubMed
PubMed Central
Google Scholar
Tacchini L, Dansi P, Matteucci E, Desiderio MA (2001) Hepatocyte growth factor signalling stimulates hypoxia inducible factor-1 (HIF-1) activity in HepG2 hepatoma cells. Carcinogenesis 22:1363–1371. doi:10.1093/carcin/22.9.1363
Article
CAS
PubMed
Google Scholar
Gusarova GA, Trejo HE, Dada LA, Briva A, Welch LC, Hamanaka RB, Mutlu GM, Chandel NS, Prakriya M, Sznajder JI (2011) Hypoxia leads to Na, K-ATPase downregulation via Ca(2+) release-activated Ca(2+) channels and AMPK activation. Mol Cell Biol 31:3546–56. doi:10.1128/MCB.05114-11
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamamoto H, Mukaisho K, Sugihara H, Hattori T, Asano S (2011) Down-regulation of FXYD3 is induced by transforming growth factor-β signaling via ZEB1/δEF1 in human mammary epithelial cells. Biol Pharm Bull 34:324–9. doi:10.1248/bpb.34.324
Article
CAS
PubMed
Google Scholar
Okudela K, Yazawa T, Ishii J, Woo T, Mitsui H, Bunai T, Sakaeda M, Shimoyamada H, Sato H, Tajiri M, Ogawa N, Masuda M, Sugimura H, Kitamura H (2009) Down-regulation of FXYD3 expression in human lung cancers: its mechanism and potential role in carcinogenesis. Am J Pathol 175:2646–2656. doi:10.2353/ajpath.2009.080571
Article
CAS
PubMed
PubMed Central
Google Scholar
Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin M a (2008) Mucins in the mucosal barrier to infection. Mucosal Immunol 1:183–197. doi:10.1038/mi.2008.5
Article
CAS
PubMed
Google Scholar
Vimal DB, Khullar M, Gupta S, Ganguly NK (2000) Intestinal mucins: the binding sites for Salmonella typhimurium. Mol Cell Biochem 204:107–117
Article
CAS
PubMed
Google Scholar
Mantle M, Husar SD (1994) Binding of Yersinia enterocolitica to purified, native small intestinal mucins from rabbits and humans involves interactions with the mucin carbohydrate moiety. Infect Immun 62:1219–27
CAS
PubMed
PubMed Central
Google Scholar
Bergstrom KSB, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, Ryz N, Huang T, Velcich A, Finlay BB, Chadee K, Vallance BA (2010) Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 6:e1000902. doi:10.1371/journal.ppat.1000902
Article
PubMed
PubMed Central
Google Scholar
Aubert S, Fauquette V, Hemon B, Lepoivre R, Briez N, Bernard D, Van Seuningen I, Leroy X, Perrais M (2009) MUC1, a new hypoxia inducible factor target gene, is an actor in clear renal cell carcinoma tumor progression. Cancer Res 69:5707–5715. doi:10.1158/0008-5472.CAN-08-4905
Article
CAS
PubMed
Google Scholar
Dilly AK, Lee YJ, Zeh HJ, Guo ZS, Bartlett DL, Choudry HA (2016) Targeting hypoxia-mediated mucin 2 production as a therapeutic strategy for mucinous tumors. Transl Res 169:19–30.e1. doi:10.1016/j.trsl.2015.10.006
Article
CAS
PubMed
Google Scholar
Cummins EP, Doherty G a, Taylor CT (2013) Hydroxylases as therapeutic targets in inflammatory bowel disease. Lab Investig 93:378–383. doi:10.1038/labinvest.2013.9
Article
CAS
PubMed
Google Scholar
Giatromanolaki A, Sivridis E, Maltezos E, Papazoglou D, Simopoulos C, Gatter KC, Harris a L, Koukourakis MI (2003) Hypoxia inducible factor 1alpha and 2alpha overexpression in inflammatory bowel disease. J Clin Pathol 56:209–213
Article
CAS
PubMed
PubMed Central
Google Scholar
Cummins EP, Seeballuck F, Keely SJ, Mangan NE, Callanan JJ, Fallon PG, Taylor CT (2008) The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134:156–165. doi:10.1053/j.gastro.2007.10.012
Article
CAS
PubMed
Google Scholar
Hirota S a, Fines K, Ng J, Traboulsi D, Lee J, Ihara E, Li Y, Willmore WG, Chung D, Scully MM, Louie T, Medlicott S, Lejeune M, Chadee K, Armstrong G, Colgan SP, Muruve D a, MacDonald J a, Beck PL (2010) Hypoxia-inducible factor signaling provides protection in clostridium difficile-induced intestinal injury. Gastroenterology 139:259–269.e3. doi:10.1053/j.gastro.2010.03.045
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhandari T, Nizet V (2014) Hypoxia-inducible factor (HIF) as a pharmacological target for prevention and treatment of infectious diseases. Infect Dis Ther 159–174. doi: 10.1007/s40121-014-0030-1
Zinkernagel AS, Johnson RS, Nizet V (2007) Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med 85:1339–1346. doi:10.1007/s00109-007-0282-2
Article
CAS
PubMed
Google Scholar
Zinkernagel AS, Peyssonnaux C, Johnson RS, Nizet V (2008) Pharmacologic augmentation of hypoxia-inducible factor-1alpha with mimosine boosts the bactericidal capacity of phagocytes. J Infect Dis 197:214–217. doi:10.1086/524843
Article
CAS
PubMed
Google Scholar
Robinson A, Keely S, Karhausen J, Gerich ME, Furuta GT, Colgan SP (2008) Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134:145–155. doi:10.1053/j.gastro.2007.09.033
Article
CAS
PubMed
PubMed Central
Google Scholar
Tran Van Nhieu G, Bourdet-Sicard R, Dumenil G, Blocker A, Sansonetti PJ (2000) Bacterial signals and cell responses using Shigella entry into epithelial cells. Cell Microbiol 2:187–193. doi:10.1046/j.1462-5822.2000.00046.x
Article
CAS
PubMed
Google Scholar