Powers ET, Balch WE: Diversity in the origins of proteostasis networks — a driver for protein function in evolution. Nat Rev Mol Cell Biol 2013, 14: 237–248. doi:10.1038/nrm3542 10.1038/nrm3542
Article
CAS
PubMed
PubMed Central
Google Scholar
Balch WE, Sznajder JI, Budinger S, Finley D, Laposky AD, Cuervo AM, Benjamin IJ, Barreiro E, Morimoto RI, Postow L, Weissman AM, Gail D, Banks-Schlegel S, Croxton T, Gan W (2013) NHLBI Workshop: Malfolded protein structure and proteostasis in lung diseases. Am J Respir Crit Care Med 130913130718005. doi:10.1164/rccm.201306–1164WS
Google Scholar
Meiners S, Green CM (2014) Protein quality control in lung disease: it's all about cloud networking. Eur Respir J. doi:10.1183/09031936.00105214
Google Scholar
Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU: Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 2013, 82: 323–355. doi:10.1146/annurev-biochem-060208–092442 10.1146/annurev-biochem-060208-092442
Article
CAS
PubMed
Google Scholar
Hartl FU, Bracher A, Hayer-Hartl M: Molecular chaperones in protein folding and proteostasis. Nature 2011, 475: 324–332. doi:10.1038/nature10317 10.1038/nature10317
Article
CAS
PubMed
Google Scholar
Morimoto RI: Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 2008, 22: 1427–1438. doi:10.1101/gad.1657108 10.1101/gad.1657108
Article
CAS
PubMed
PubMed Central
Google Scholar
Wickner S: Posttranslational quality control: folding, refolding, and degrading proteins. Science 1999, 286: 1888–1893. doi:10.1126/science.286.5446.1888 10.1126/science.286.5446.1888
Article
CAS
PubMed
Google Scholar
He C, Klionsky DJ: Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009, 43: 67–93. doi:10.1146/annurev-genet-102808–114910 10.1146/annurev-genet-102808-114910
Article
CAS
PubMed
PubMed Central
Google Scholar
Kroemer G, Mariño G, Levine B: Autophagy and the integrated stress response. Mol Cell 2010, 40: 280–293. doi:10.1016/j.molcel.2010.09.023 10.1016/j.molcel.2010.09.023
Article
CAS
PubMed
PubMed Central
Google Scholar
Crotzer VL, Blum JS (2010) Autophagy and adaptive immunity: autophagy and immunity. Immunology. doi:10.1111/j.1365–2567.2010.03321.x
Google Scholar
Komander D, Rape M: The ubiquitin code. Annu Rev Biochem 2012, 81: 203–229. doi:10.1146/annurev-biochem-060310–170328 10.1146/annurev-biochem-060310-170328
Article
CAS
PubMed
Google Scholar
Finley D: Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 2009, 78: 477–513. doi:10.1146/annurev.biochem.78.081507.101607 10.1146/annurev.biochem.78.081507.101607
Article
CAS
PubMed
PubMed Central
Google Scholar
Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE: Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 2011, 10: 29–46. doi:10.1038/nrd3321 10.1038/nrd3321
Article
CAS
PubMed
Google Scholar
Kloetzel PM, Ossendorp F: Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 2004, 16: 76–81. 10.1016/j.coi.2003.11.004
Article
CAS
PubMed
Google Scholar
Meiners S, Eickelberg O: What shall we do with the damaged proteins in lung disease? Ask the proteasome! Eur Respir J 2012, 40: 1260–1268. doi:10.1183/09031936.00208511 10.1183/09031936.00208511
Article
CAS
PubMed
Google Scholar
Meiners S, Keller IE, Semren N, Caniard A (2014) Regulation of the proteasome: evaluating the lung proteasome as a new therapeutic target. Antioxid Redox Signal 140314142218004. doi:10.1089/ars.2013.5798
Mijaljica D, Devenish RJ: Nucleophagy at a glance. J Cell Sci 2013, 126: 4325–4330. doi:10.1242/jcs.133090 10.1242/jcs.133090
Article
CAS
PubMed
Google Scholar
Claessen JHL, Kundrat L, Ploegh HL: Protein quality control in the ER: balancing the ubiquitin checkbook. Trends Cell Biol 2012, 22: 22–32. doi:10.1016/j.tcb.2011.09.010 10.1016/j.tcb.2011.09.010
Article
CAS
PubMed
PubMed Central
Google Scholar
Karbowski M, Youle RJ: Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr Opin Cell Biol 2011, 23: 476–482. doi:10.1016/j.ceb.2011.05.007 10.1016/j.ceb.2011.05.007
Article
CAS
PubMed
PubMed Central
Google Scholar
Ron D, Walter P: Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007, 8: 519–529. doi:10.1038/nrm2199 10.1038/nrm2199
Article
CAS
PubMed
Google Scholar
Pellegrino MW (2013) Nargund AM, Haynes CM Signaling the mitochondrial unfolded protein response. Biochim Biophys Acta BBA - Mol Cell Res. doi:10.1016/j.bbamcr.2012.02.019
Google Scholar
Shore GC, Papa FR, Oakes SA: Signaling cell death from the endoplasmic reticulum stress response. Curr Opin Cell Biol 2011, 23: 143–149. doi:10.1016/j.ceb.2010.11.003 10.1016/j.ceb.2010.11.003
Article
CAS
PubMed
PubMed Central
Google Scholar
Papa L, Germain D: Estrogen receptor mediates a distinct mitochondrial unfolded protein response. J Cell Sci 2011, 124: 1396–1402. doi:10.1242/jcs.078220 10.1242/jcs.078220
Article
CAS
PubMed
PubMed Central
Google Scholar
Rambold AS, Lippincott-Schwartz J: Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle Georget Tex 2011, 10: 4032–4038. doi:10.4161/cc.10.23.18384 10.4161/cc.10.23.18384
Article
CAS
Google Scholar
McElvaney NG, Greene CM: Mechanisms of protein misfolding in conformational lung diseases. Curr Mol Med 2012, 12: 850–859. 10.2174/156652412801318728
Article
CAS
PubMed
Google Scholar
Tanjore H, Blackwell TS, Lawson WE: Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. AJP Lung Cell Mol Physiol 2012, 302: L721-L729. doi:10.1152/ajplung.00410.2011 10.1152/ajplung.00410.2011
Article
CAS
Google Scholar
Bouchecareilh M, Balch WE: Proteostasis: a new therapeutic paradigm for pulmonary disease. Proc Am Thorac Soc 2011, 8: 189–195. doi:10.1513/pats.201008–055MS 10.1513/pats.201008-055MS
Article
CAS
PubMed
PubMed Central
Google Scholar
Turnbull EL, Rosser MFN, Cyr DM: The role of the UPS in cystic fibrosis. BMC Biochem 2007, 8(Suppl 1):S11. doi:10.1186/1471–2091–8-S1-S11 10.1186/1471-2091-8-S1-S11
Article
CAS
PubMed
PubMed Central
Google Scholar
Hetz C, Chevet E, Harding HP: Targeting the unfolded protein response in disease. Nat Rev Drug Discov 2013, 12: 703–719. 10.1038/nrd3976
Article
CAS
PubMed
Google Scholar
Mizumura K, Cloonan SM, Haspel JA, Choi AMK: The emerging importance of autophagy in pulmonary diseases. Chest J 2012, 142: 1289. doi:10.1378/chest.12–0809 10.1378/chest.12-0809
Article
CAS
Google Scholar
Ribeiro CMP, Boucher RC: Role of endoplasmic reticulum stress in cystic fibrosis-related airway inflammatory responses. Proc Am Thorac Soc 2010, 7: 387–394. doi:10.1513/pats.201001–017AW 10.1513/pats.201001-017AW
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawson WE, Grant SW, Ambrosini V, Womble KE, Dawson EP, Lane KB, Markin C, Renzoni E, Lympany P, Thomas AQ, Roldan J, Scott TA, Blackwell TS, Phillips JA 3rd, Loyd JE, du Bois RM: Genetic mutations in surfactant protein C are a rare cause of sporadic cases of IPF. Thorax 2004, 59: 977–980. doi:10.1136/thx.2004.026336 10.1136/thx.2004.026336
Article
CAS
PubMed
PubMed Central
Google Scholar
Mulugeta S: A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation. Am J Respir Cell Mol Biol 2005, 32: 521–530. doi:10.1165/rcmb.2005–0009OC 10.1165/rcmb.2005-0009OC
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahavadi P, Guenther A, Gochuico BR: Hermansky-Pudlak syndrome interstitial pneumonia: it's the epithelium, stupid! Am J Respir Crit Care Med 2012, 186: 939–940. doi:10.1164/rccm.201210–1771ED 10.1164/rccm.201210-1771ED
Article
PubMed
PubMed Central
Google Scholar
Selman M, Pardo A: Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model. Am J Respir Crit Care Med 2014, 189: 1161–1172. doi:10.1164/rccm.201312–2221PP 10.1164/rccm.201312-2221PP
Article
CAS
PubMed
Google Scholar
Hilgendorff A, Reiss I, Ehrhardt H, Eickelberg O, Alvira CM (2013) Chronic lung disease in the preterm infant: lessons learned from animal models. Am J Respir Cell Mol Biol 130911135746008. doi:10.1165/rcmb.2013–0014TR
Google Scholar
Berkelhamer SK, Kim GA, Radder JE, Wedgwood S, Czech L, Steinhorn RH, Schumacker PT: Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung. Free Radic Biol Med 2013, 61: 51–60. 10.1016/j.freeradbiomed.2013.03.003
Article
CAS
PubMed
Google Scholar
Birukov KG: Cyclic stretch, reactive oxygen species, and vascular remodeling. Antioxid Redox Signal 2009, 11: 1651–1667. doi:10.1089/ars.2008.2390 10.1089/ars.2008.2390
Article
CAS
PubMed
PubMed Central
Google Scholar
Choo-Wing R, Syed MA, Harijith A, Bowen B, Pryhuber G, Janér C, Andersson S, Homer RJ, Bhandari V: Hyperoxia and interferon-γ-induced injury in developing lungs occur via cyclooxygenase-2 and the endoplasmic reticulum stress-dependent pathway. Am J Respir Cell Mol Biol 2013, 48: 749–757. doi:10.1165/rcmb.2012–0381OC 10.1165/rcmb.2012-0381OC
Article
CAS
PubMed
PubMed Central
Google Scholar
Konsavage WM, Zhang L, Wu Y, Shenberger JS: Hyperoxia-induced activation of the integrated stress response in the newborn rat lung. AJP Lung Cell Mol Physiol 2012, 302: L27-L35. doi:10.1152/ajplung.00174.2011 10.1152/ajplung.00174.2011
Article
CAS
Google Scholar
López-Alonso I, Aguirre A, González-López A, Fernández AF, Amado-Rodríguez L, Astudillo A, Batalla-Solís E, Albaiceta GM: Impairment of autophagy decreases ventilator-induced lung injury by blockade of the NF-κB pathway. AJP Lung Cell Mol Physiol 2013, 304: L844-L852. doi:10.1152/ajplung.00422.2012 10.1152/ajplung.00422.2012
Article
CAS
Google Scholar
Tanaka A, Jin Y, Lee SJ, Zhang M, Kim HP, Stolz DB, Ryter SW, Choi AM: Hyperoxia-induced LC3B interacts with the Fas apoptotic pathway in epithelial cell death. Am J Respir Cell Mol Biol 2012, 46: 507–514. doi:10.1165/rcmb.2009–0415OC 10.1165/rcmb.2009-0415OC
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Sauler M, Shinn AS, Gong H, Haslip M, Shan P, Mannam P, Lee PJ: Endothelial PINK1 mediates the protective effects of NLRP3 deficiency during lethal oxidant injury. J Immunol 2014, 192: 5296–5304. doi:10.4049/jimmunol.1400653 10.4049/jimmunol.1400653
Article
CAS
PubMed
PubMed Central
Google Scholar
Chambellan A, Cruickshank PJ, McKenzie P, Cannady SB, Szabo K, Comhair SA, Erzurum SC: Gene expression profile of human airway epithelium induced by hyperoxia in vivo . Am J Respir Cell Mol Biol 2006, 35: 424–435. doi:10.1165/rcmb.2005–0251OC 10.1165/rcmb.2005-0251OC
Article
CAS
PubMed
PubMed Central
Google Scholar
Shao L, Perez RE, Gerthoffer WT, Truog WE, Xu D: Heat shock protein 27 protects lung epithelial cells from hyperoxia-induced apoptotic cell death. Pediatr Res 2009, 65: 328–333. doi:10.1203/PDR.0b013e3181961a51 10.1203/PDR.0b013e3181961a51
Article
CAS
PubMed
Google Scholar
British Thoracic Society:The burden of lung disease. British Thoracic Society, London UK; 2006.
Google Scholar
Holgate ST: Has the time come to rethink the pathogenesis of asthma? Curr Opin Allergy Clin Immunol 2010, 10: 48–53. doi:10.1097/ACI.0b013e3283347be5 10.1097/ACI.0b013e3283347be5
Article
PubMed
Google Scholar
Sugiura H, Ichinose M: Oxidative and nitrative stress in bronchial asthma. Antioxid Redox Signal 2008, 10: 785–798. doi:10.1089/ars.2007.1937 10.1089/ars.2007.1937
Article
CAS
PubMed
Google Scholar
Zuo L, Otenbaker NP, Rose BA, Salisbury KS: Molecular mechanisms of reactive oxygen species-related pulmonary inflammation and asthma. Mol Immunol 2013, 56: 57–63. doi:10.1016/j.molimm.2013.04.002 10.1016/j.molimm.2013.04.002
Article
CAS
PubMed
Google Scholar
Kim SR, Kim DI, Kang MR, Lee KS, Park SY, Jeong JS, Lee YC: Endoplasmic reticulum stress influences bronchial asthma pathogenesis by modulating nuclear factor κB activation. J Allergy Clin Immunol 2013, 132: 1397–1408.e11. doi:10.1016/j.jaci.2013.08.041 10.1016/j.jaci.2013.08.041
Article
CAS
PubMed
Google Scholar
Martin LJ, Gupta J, Jyothula SS, Butsch Kovacic M, Biagini Myers JM, Patterson TL, Ericksen MB, He H, Gibson AM, Baye TM, Amirisetty S, Tsoras AM, Sha Y, Eissa NT, Hershey GK: Functional variant in the autophagy-related 5 gene promotor is associated with childhood asthma. PLoS One 2012, 7: e33454. doi:10.1371/journal.pone.0033454 10.1371/journal.pone.0033454
Article
CAS
PubMed
PubMed Central
Google Scholar
Poon AH, Chouiali F, Tse SM, Litonjua AA, Hussain SN, Baglole CJ, Eidelman DH, Olivenstein R, Martin JG, Weiss ST, Hamid Q, Laprise C: Genetic and histologic evidence for autophagy in asthma pathogenesis. J Allergy Clin Immunol 2012, 129: 569–571. doi:10.1016/j.jaci.2011.09.035 10.1016/j.jaci.2011.09.035
Article
PubMed
PubMed Central
Google Scholar
Volkov A, Hagner S, Löser S, Alnahas S, Raifer H, Hellhund A, Garn H, Steinhoff U: β5i subunit deficiency of the immunoproteasome leads to reduced Th2 response in OVA induced acute asthma. PLoS One 2013, 8: e60565. doi:10.1371/journal.pone.0060565 10.1371/journal.pone.0060565
Article
CAS
PubMed
PubMed Central
Google Scholar
Kenche H, Baty CJ, Vedagiri K, Shapiro SD, Blumental-Perry A: Cigarette smoking affects oxidative protein folding in endoplasmic reticulum by modifying protein disulfide isomerase. FASEB J 2013, 27: 965–977. doi:10.1096/fj.12–216234 10.1096/fj.12-216234
Article
CAS
PubMed
Google Scholar
Yao H, Rahman I: Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl Pharmacol 2011, 254: 72–85. doi:10.1016/j.taap.2009.10.022 10.1016/j.taap.2009.10.022
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryter SW, Nakahira K, Haspel JA, Choi AMK: Autophagy in pulmonary diseases. Annu Rev Physiol 2012, 74: 377–401. doi:10.1146/annurev-physiol-020911–153348 10.1146/annurev-physiol-020911-153348
Article
CAS
PubMed
Google Scholar
Patel AS, Morse D, Choi AMK (2012) Regulation and functional significance of autophagy in respiratory cell biology and disease. Am J Respir Cell Mol Biol. doi10.1165/rcmb.2012–0282TR
Dromparis P, Michelakis ED: Mitochondria in vascular health and disease. Annu Rev Physiol 2013, 75: 95–126. doi:10.1146/annurev-physiol-030212–183804 10.1146/annurev-physiol-030212-183804
Article
CAS
PubMed
Google Scholar
Patel AS, Lin L, Geyer A, Haspel JA, An CH, Cao J, Rosas IO, Morse D: Autophagy in idiopathic pulmonary fibrosis. PLoS One 2012, 7: e41394. doi:10.1371/journal.pone.0041394 10.1371/journal.pone.0041394
Article
CAS
PubMed
PubMed Central
Google Scholar
Baker TA, Bach HH 4th, Gamelli RL, Love RB, Majetschak M (2014) Proteasomes in lungs from organ donors and patients with end-stage pulmonary diseases. Physiol. Res. Acad. Sci. Bohemoslov 63(3):311–319
CAS
Google Scholar
Malhotra D, Thimmulappa R, Navas-Acien A, Sandford A, Elliott M, Singh A, Chen L, Zhuang X, Hogg J, Pare P, Tuder RM, Biswal S: Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med 2008, 178: 592–604. doi:10.1164/rccm.200803–380OC 10.1164/rccm.200803-380OC
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei J, Rahman S, Ayaub EA, Dickhout JG, Ask K: Protein misfolding and endoplasmic reticulum stress in chronic lung disease. Chest J 2013, 143: 1098. doi:10.1378/chest. 12–2133 10.1378/chest.12-2133
Article
CAS
Google Scholar
Yeager ME, Reddy MB, Nguyen CM, Colvin KL, Ivy DD, Stenmark KR (2012) Activation of the unfolded protein response is associated with pulmonary hypertension. Pulm Circ 2:229–240
Article
CAS
PubMed
PubMed Central
Google Scholar
van Rijt SH, Keller IE, John G, Kohse K, Yildirim AÖ, Eickelberg O, Meiners S: Acute cigarette smoke exposure impairs proteasome function in the lung. Am J Physiol Lung Cell Mol Physiol 2012, 303(9):L814–823. 10.1152/ajplung.00128.2012
Article
CAS
PubMed
Google Scholar
Somborac-Bacura A, van der Toorn M, Franciosi L, Slebos DJ, Zanic-Grubisic T, Bischoff R, van Oosterhout AJ: Cigarette smoke induces endoplasmic reticulum stress response and proteasomal dysfunction in human alveolar epithelial cells. Exp Physiol 2012, 98: 316–325. doi:10.1113/expphysiol.2012.067249 10.1113/expphysiol.2012.067249
Article
CAS
PubMed
Google Scholar
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G: The hallmarks of aging. Cell 2013, 153: 1194–1217. doi:10.1016/j.cell.2013.05.039 10.1016/j.cell.2013.05.039
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown MK, Naidoo N: The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol 2012, 3: 263. doi:10.3389/fphys.2012.00263
PubMed
PubMed Central
Google Scholar
Rojas M, Meiners S, Le Saux CJ (2014) Molecular Aspects of Aging: Understanding Lung Aging. John Wiley & Sons, Hoboken, New Jersey
Book
Google Scholar
Torres-González E, Bueno M, Tanaka A, Krug LT, Cheng DS, Polosukhin VV, Sorescu D, Lawson WE, Blackwell TS, Rojas M, Mora AL: Role of endoplasmic reticulum stress in age-related susceptibility to lung fibrosis. Am J Respir Cell Mol Biol 2012, 46: 748–756. doi:10.1165/rcmb.2011–0224OC 10.1165/rcmb.2011-0224OC
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez J, Verbist K, Wang R, Green DR: The relationship between metabolism and the autophagy machinery during the innate immune response. Cell Metab 2013, 17: 895–900. doi:10.1016/j.cmet.2013.05.012 10.1016/j.cmet.2013.05.012
Article
CAS
PubMed
PubMed Central
Google Scholar
Osorio F, Lambrecht B, Janssens S: The UPR and lung disease. Semin Immunopathol 2013, 35: 293–306. doi:10.1007/s00281–013–0368–6 10.1007/s00281-013-0368-6
Article
CAS
PubMed
Google Scholar