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Lung epithelial GM-CSF improves host
defense function and epithelial repair
in influenza virus pneumonia—a new
therapeutic strategy?
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Abstract

Influenza viruses (IVs) circulate seasonally and are a common cause of respiratory infections in pediatric and adult
patients. Additionally, recurrent pandemics cause massive morbidity and mortality worldwide. Infection may result
in rapid progressive viral pneumonia with fatal outcome. Since accurate treatment strategies are still missing, research
refocuses attention to lung pathology and cellular crosstalk to develop new therapeutic options.
Alveolar epithelial cells (AECs) play an important role in orchestrating the pulmonary antiviral host response. After IV
infection they release a cascade of immune mediators, one of which is granulocyte and macrophage colony-stimulating
factor (GM-CSF). GM-CSF is known to promote differentiation, activation and mobilization of myeloid cells. In the lung,
GM-CSF drives immune functions of alveolar macrophages and dendritic cells (DCs) and also improves epithelial repair
processes through direct interaction with AECs. During IV infection, AEC-derived GM-CSF shows a lung-protective effect
that is also present after local GM-CSF application. This mini-review provides an overview on GM-CSF-modulated
immune responses to IV pneumonia and its therapeutic potential in severe IV pneumonia.
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Introduction
Respiratory viral infections are often seen in pediatric
patients [1]. They may cause primary viral pneumonia
that may progress to lung failure with fatal outcome.
Apart from respiratory syncytial virus (RSV) and other
respiratory viruses, influenza virus (IV) infection is a
common cause of acute respiratory failure on pediatric
intensive care units (ICUs) [2].
IVs are enveloped single-stranded negative-sensed

RNA viruses, divided into three genera A, B, and C [3].
They cause respiratory infections in humans and not
only occur seasonally but also occur in recurrent pan-
demics [4]. IV A is further divided into subtypes that
differ in the surface glycoproteins hemagglutinin (HA)

and neuraminidase (NA). The viral HA serves to attach
to host cells; the NA protein cares for viral release after
replication [5]. Due to the segmented nature of its genome
and a high rate of mutations during replication, seasonal
IVs show an annual change of antigenic qualities in the
HA and NA genes, requiring annual immunization. Muta-
tions in the coding genes for HA and NA are called
antigenic drift, while the reassortment of viral gene seg-
ments is called antigenic shift [3]. The creation of new
viral subtypes by reassortment is only known to be
prevalent in type A IVs with a large reservoir of different
strains in animals, particularly waterfowl but also in other
birds and mammals [6].
Primary target cells for IV infection in humans are

respiratory epithelial cells [7]. The current opinion is
that the major route of infection proceeds by viral HA
binding to sialic acid receptors on the epithelial cells,
followed by internalization via endocytosis [8]. The viral
genome is replicated in the nucleus and translated in the
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cytoplasm, and mature virus particles are released from
the cell via budding [5].
As soon as the infection spreads from the upper to the

lower respiratory tract, alveolar epithelial cells (AECs)
become primary targets for productive IV replication [4].
Pro-inflammatory mechanisms—together with a direct viral
cytopathogenic effect—lead to AEC apoptosis. Additionally,
lung pathology is characterized by loss of alveolar barrier
function and alveolar edema fluid accumulation [9].
Ongoing inflammation leads to increased capillary/alveolar
leakage, followed by severe hypoxemia [4] and results in
acute respiratory distress syndrome in children (PARDS)
and adults [10].
Rapid and effective viral clearance from the distal lung

by immune effector cells and the initiation of epithelial
repair processes including expansion of local epithelial
progenitor cells and resealing of the epithelial layer are
crucial to recover from IV-induced lung injury [11, 12].
The inflammatory immune response needs to be balanced
between the elimination of virus and immune-mediated
pulmonary injury to limit the damage to the respiratory
tract [13].
Myeloid cells like monocytes, macrophages, dendritic

cells (DCs), and their common precursor cells, summa-
rized as mononuclear phagocytes, are crucial in driving
IV clearance [12]. Combining sensor and effector func-
tions of innate immunity, the lung epithelium plays an
important role in coordinating, maintaining, and bal-
ancing the phagocyte-mediated antiviral host response
[7, 14, 15]. The intimate spatial proximity of alveolar
macrophages and the tissue-resident DC network with
the distal lung epithelium provides an ideal basis for
direct cell-cell communication. Mechanisms involved
in this cellular crosstalk might represent potential tar-
gets for treatment.

Pulmonary GM-CSF and its secretion during IV infection
The growth factor granulocyte and macrophage colony-
stimulating factor (GM-CSF) is widely recognized to
promote proliferation, differentiation, and activation of
monocytes, granulocytes, macrophages, and DCs in vivo
and plays an important role in immunity [16, 17]. Involved
in proinflammatory cytokine response, it is discussed to
be responsible for immunopathology in several inflamma-
tory or autoimmune diseases [16]. It controls nonlym-
phoid tissue DC homeostasis [18] and was currently
reported to modulate the development of inflammatory
macrophages and monocytes [19]. In the lung, GM-
CSF was shown not only to play a role in allergic airway
disease [20, 21] but also to be crucial for antimicrobial
pulmonary host defense function [22–24]. Additionally, it
is essential for surfactant homeostasis. GM-CSF-deficient
mice develop a similar pathology to human pulmonary
alveolar proteinosis (PAP) [25]. An exceeded accumulation

of surfactant phospholipids and proteins in the alveolar
lining fluid impairs gas exchange and patients show in-
creased susceptibility for microbial infections [22]. PAP is
found to be associated with GM-CSF or GM-CSF receptor
auto-antibodies or dysfunction [26].
Pulmonary GM-CSF is mainly expressed by AEC type II

and released under inflammatory conditions [27]. Other
cell types like macrophages, endothelial cells, fibroblasts
and T cells also produce GM-CSF, but AECs were shown
to be the only CD45− cell population in the distal lung
parenchyma that upregulates GM-CSF upon IV infection,
and produces high levels of GM-CSF in the alveolar lining
fluid [28]. New findings report AEC GM-CSF secretion
in IV infection to be mediated through HGF/c-Met
and TGF-α/epithelial growth factor receptor (EGFR)
signaling [29].

AEC-derived GM-CSF is highly protective in IV pneumonia
It is well established that AEC-released GM-CSF im-
proves innate immune responses of myeloid cells, in par-
ticular alveolar macrophages. Alveolar macrophages of
GM-CSF-deficient mice show abnormalities in morph-
ology, maturation, and function, depending on transcrip-
tion factor PU.1 [22, 26]. Sever-Chroneos et al. [30]
found a decreased resistance to IV in GM-CSF-deficient
mice due to impaired pathogen clearance by macrophages.
This is stressed by findings from Berclaz et al. who demon-
strated that the Fcɣ receptor (FcɣR)-mediated opsonopha-
gocytosis of invaded pathogens by alveolar macrophages is
highly dependent on GM-CSF signaling via PU.1 [31]. T
cell-produced interferon ɣ (IFN ɣ) during course of infec-
tion also effected augmented FcɣR levels on alveolar
macrophages which in turn stimulated IFN ɣ produc-
tion by secretion of inflammatory cytokines (interleukin
(IL)-18, IL-12), linking innate and adaptive immunity in
a positive feedback loop. Elevated alveolar GM-CSF level
in transgenic mice increased numbers and resistance of
alveolar macrophages and provided protection against
lethal IV infections [32]. Subramaniam et al. [33] observed
a GM-CSF-dependent protection through stimulation of
reactive oxygen species (ROS) production by macrophages
not only against IV pneumonia itself but also against
secondary bacterial pneumonia, a major cause of mor-
bidity and mortality after IV infection. However, GM-
CSF-dependent activation of pulmonary innate immunity
does not explain the beneficial effects of AEC GM-CSF in
IV infection in total. Lung CD103+ DCs were found to be
key players for the GM-CSF-dependent lung protective ef-
fect by our group [28]. After IV infection, pulmonary
CD103+ DCs are expanded and activated and their migra-
tion and antigen (Ag) presentation to the draining medias-
tinal lymph nodes is mediated by GM-CSF. This is
associated with a better viral clearance and Ag-specific T
cell recruitment, suggesting improved resident lung DC

Rösler and Herold Molecular and Cellular Pediatrics  (2016) 3:29 Page 2 of 6



host defense capacities during IV infection by AEC GM-
CSF. Min et al. [34] identified GM-CSF to be a major li-
censing factor of CD8+ T lymphocytes to activate DCs
during priming in lymphoid tissue, providing a positive
feedback loop in the stimulation of CD8+ T cell prolifera-
tion. Accordingly, Greter et al. [18] revealed GM-CSF to
be indispensable for the induction of specific CD8+ T cell
immunity. Chen et al. [35] also found GM-CSF to pro-
mote T cell, B cell, and DC maturation in order to enable
the production of IV specific antibodies.
During IV pneumonia, GM-CSF furthermore has a

lung barrier-protective effect and improves survival, also
after local application [28, 30, 32, 36]. AEC-expressed
GM-CSF has direct beneficial effects on the injured epi-
thelium. It is crucial in mediating epithelial proliferation
in inflammatory or hyperoxic lung injury, supports re-
pair and restoration of barrier function, and induces the
return to tissue homeostasis [27, 37]. In a bleomycin rat
model, it was shown that defects in AEC II GM-CSF se-
cretion are crucial for pathogenesis of pulmonary fibrosis
[38]. Sturrock et al. displayed certain microRNAs (miR-
NAs) (133a and 133b) to suppress protective AEC GM-
CSF secretion by inhibition of GM-CSF messenger
RNA (mRNA) translation in oxidative stress [39]. This
effect seemed to be AEC specific as the same miRNAs did
not suppress T cell GM-CSF expression during hyperoxia.
Figure 1 summarizes reported findings on GM-CSF-

modulated immune functions in IV pneumonia.

In adult patients with acute respiratory distress syn-
drome (ARDS), elevated GM-CSF levels in the broncho-
alveolar lavage fluid (BALF) were shown to be associated
with antiapoptotic effects and with improved epithelial
barrier integrity and survival [40, 41]. In human lung
sections, GM-CSF expressed by hyperplastic type II
AECs mediates accumulation of neighboring CD1a+

DCs in inflamed lungs [42]. These findings suggest
that GM-CSF is similarly beneficial and operative in
humans. Of note, high serum cytokine levels of GM-CSF
in pediatric intensive care unit (ICU) patients with severe
influenza infection were associated with innate immune
suppression and mortality [43], highlighting the par-
ticular beneficial effect of alveolar as opposed to circu-
lating GM-CSF.

GM-CSF as a therapeutic strategy
Current treatment strategies for IV infection focus on
vaccines and antiviral agents. Due to its rapid genetic
modification capacity, it will be a challenge to keep up
with therapeutic targets as resistance rapidly occurs
against current antivirals. Immune mediators that drive
pulmonary host defense function like GM-CSF propose
appealing alternative treatment strategies, especially if
they do not only protect against IV infection itself but
also against common complications like secondary
bacterial pneumonia and severe damage of alveolar
epithelium.

Fig. 1 GM-CSF-modulated immune response to IV infection. After pulmonary IV infection GM-CSF is released from AEC II, mediated through
HGF/c-Met and TGF-α/EGFR signaling. In an autocrine manner, it stimulates epithelial repair, including epithelial proliferation and barrier
restoration. Innate and adaptive immunity are activated, resulting in accelerated viral clearance. Via PU.1, GM-CSF improves AM resistance, maturation,
ROS production, and phagocytosis capacity, e.g., by the FcγR-mediated opsonophagocytosis. GM-CSF also stimulates activation and proliferation of
DCs, especially CD103+ DCs, and T cells and enhances Ag priming and IV-specific CD8+ T cell recruitment. Altogether AEC GM-CSF leads to increased
survival and reduced lung injury. AEC alveolar epithelial cells, Ag antigen, AM alveolar macrophage, c-Met hepatocyte growth factor receptor,
DC dendritic cell, EGFR epithelial growth factor receptor, FcγR Fcɣ receptor, GM-CSF granulocyte and macrophage colony stimulating factor,
HGF hepatocyte growth factor, PU.1 transcription factor PU.1, ROS reactive oxygen species, TGF-α transcriptional growth factor α
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A clinical trial for low-dose intravenous GM-CSF treat-
ment in adult patients with severe sepsis and respiratory
dysfunction led to the conclusion that GM-CSF treatment
was associated with improved gas exchange and might
play a homeostatic role [44]. Another trial in adult pa-
tients with acute lung injury (ALI) failed to improve sur-
vival and ventilation parameters by intravenous GM-CSF
application [45]. Regarding the mouse model, a high local
concentration of GM-CSF in the alveolar lining fluid
seems to be more promising than systemic application
and also prevents systemic side effects. Alveolar GM-CSF
is required in a distinct local quantity to balance patho-
gen clearance and immunopathology. This is why GM-
CSF treatment should preferentially be investigated via
the inhaled route in contrast to systemic application.
Inflammation itself leads to compromised lung barrier
integrity, causing systemic loss of locally delivered GM-
CSF. Current strategies in the mouse model focus on
GM-CSF conjugation to enhance bioavailability, pro-
long half-life, and reduce systemic side-effects of ad-
ministered GM-CSF [46].
For patients with PAP, inhaled GM-CSF therapy dis-

played encouraging results [47, 48]. With regard to
pneumonia-associated ARDS an off-label treatment with
inhaled GM-CSF revealed an improvement in oxygen-
ation and morbidity [49]. GM-CSF treatment increased
activation of alveolar macrophages, important for host
defense function. A multicenter, double-blind, placebo-
controlled, randomized clinical trial on the efficacy of
inhaled GM-CSF in adult patients with pneumonia-
associated ARDS (GI-HOPE) was recently started within
the nationwide German Center for Lung Research
(NCT02595060). Similarly, an interventional safety/efficacy
study for inhaled GM-CSF treatment in children with re-
spiratory virus-associated ARDS has been implemented
(iGRASP, NCT02601365), highlighting the strong potential
of this drug in both adults and children suffering from
severe viral pneumonia and related ARDS.
This review focuses on GM-CSF-mediated effects in

IV pneumonia and associated ARDS. The clinical trials
mentioned above investigate GM-CSF treatment not ex-
clusively in IV pneumonia but in (viral) pneumonia-
associated ARDS in general. While in the mouse model,
specific conditions can be studied in detail, clinical con-
ditions are different. In the clinical setting, the under-
lying germ of infection is not always clearly defined
when patients present with pneumonia/ARDS and therapy
needs to be initiated. Furthermore, bacterial superinfection
of primary viral pneumonia is a common complication.
GM-CSF-mediated protective effects are not limited to IV
infection as they result in improvement of host defense
capacities and epithelial repair in general, both critical
processes in ARDS patients. GM-CSF might be working
similarly in other respiratory viral infections as well. It was

reported to prevent RSV-exacerbated airway hyperres-
ponsiveness by alveolar macrophage maturation [50],
for example. Protective effects of GM-CSF were also
shown for bacterial pneumonia [23, 51, 52]. For these
reasons, clinical studies focus on GM-CSF treatment
on patients, who present with pneumonia-associated
ARDS rather than exclusively IV pneumonia.

Conclusion
Local therapeutic application of GM-CSF increases mono-
nuclear phagocyte-mediated innate and adaptive host
defense and accelerates epithelial repair processes during
severe IV pneumonia in pre-clinical models. There is
evidence that it might be a powerful therapy in viral
(and bacterial) pneumonia and associated ARDS and
eventually even other forms of ARDS in children and
adults. Current data suggest that local application by the
inhalative route seems to be most promising.
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