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Mechanisms of hypothermia-induced cell
protection in the brain
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Abstract

Therapeutic hypothermia is an effective cytoprotectant and promising intervention shown to improve outcome in
patients following cardiac arrest and neonatal hypoxia-ischemia. However, despite our clinical and experimental
experiences, the protective molecular mechanisms of therapeutic hypothermia remain to be elucidated. Therefore,
in this brief overview we discuss both the clinical evidence and molecular mechanisms of therapeutic hypothermia
in order to provide further insights into this promising intervention.
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Introduction
Clinicians have investigated the application of thera-
peutic hypothermia on the human body for centuries.
Increasing clinical evidence from meta-analysis of large
randomized controlled trials and experimental data ad-
vocates the induction of therapeutic hypothermia as a
tool to achieve neuroprotection [1]. Clinical indications
for therapeutic hypothermia as a protection strategy in-
clude: myocardial infarction [2,3], cardiopulmonary by-
pass in adults [4], pediatric open heart surgery [5,6],
stroke [7], neonatal hypoxia-ischemia [8-10], and trau-
matic brain injury [11,12].
To date, the strongest evidence for its efficacy exists for

various clinical situations following cardiac arrest and neo-
natal hypoxia-ischemia. However, the effective application
of hypothermia requires a thorough understanding of the
injury mechanisms as well as its protective mechanisms.
Therefore, we discuss in this brief overview both the clin-
ical factors and molecular mechanisms of therapeutic
hypothermia in order to provide further insights into this
promising intervention.

Review
Therapeutic hypothermia: clinical evidence
Early experiences with therapeutic hypothermia in the
1940s thru 1960s falsely assumed that the protective effects
were only due to the temperature-dependent reduction in
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metabolism, which leads to lower oxygen and glucose de-
mands [13]. Therefore, patients were routinely subjected to
deep hypothermia (<30°C) with varying durations ranging
from 2 to 10 days [14]. Animal experiments in the 1980s
led to the breakthrough discovery that using mild to mod-
erate hypothermia (31°C to 35°C) resulted in improved
neurological outcome with fewer and less severe side effects
[15]. More importantly, these findings led to the realization
that hypothermia-induced neuroprotection is not only lim-
ited to decreased oxygen and glucose demands, but the
mechanisms involved are indeed much more intricate.
Three large multicenter randomized studies of newborn

infants with hypoxic ischemic encephalopathy suggest a
beneficial effect in this patient population. Gluckman et al.
demonstrated an improved outcome that persisted at 18
months of life in term infants suffering from moderate
neonatal encephalopathy who were subjected to head
cooling (CoolCap, Natus, San Carlos, CA, USA) for 72 h
[10]. A second trial demonstrated whole-body cooling to
33.5°C for 72 h reduced the risk of mortality or moderate
to severe disability in infants with moderate or severe en-
cephalopathy surveyed at 18 to 22 months of age [16]. A
third published Total Body Hypothermia for Neonatal
Encephalopathy (TOBY) trial also showed benefits from
similar whole-body cooling in newborns with perinatal as-
phyxia [17]. The study showed that hypothermia did not
significantly reduce the rate of mortality or severe disabil-
ity but resulted in improved neurologic outcomes in in-
fants assessed at 18 months of age. However, the criteria
for optimal candidates for therapeutic hypothermia have
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yet to be defined, and long-term follow-up (beyond 18
months of age) to assess the persistent and lifelong bene-
fits are needed.
Current investigations also include the Infant Cooling

Evaluation (ICE) trial to investigate the effect of moderate
whole-body hypothermia to 33.5°C for 72 h in newborns
with HIE [18] and the Therapeutic Hypothermia after
Pediatric Cardiac Arrest (THAPCA) trials, a 30-site ran-
domized clinical trial investigating the effectiveness of
therapeutic hypothermia versus therapeutic normother-
mia after in-hospital (THAPCA-IH) or out-of-hospital
(THAPCA-OH) cardiac arrest in children [19,20].

Clinical issues
Clinical issues regarding optimal target temperature, rate
of cooling, duration of cooling, rate of rewarming, as well
as optimal treatment window need further investigation.
With the introduction of therapeutic hypothermia, it is
important to differentiate between the ‘induction phase’ ,
when the temperature drops; the ‘maintenance phase’ ,
when the target temperature is achieved and maintained
at the desired level; and the ‘rewarming phase’ , when the
patient is slowly rewarmed back to normothermia.
Hypothermia induces stress responses, such as shivering,

that result in increased oxygen consumption and metabolic
rate in non-sedated patients. Animal experiments suggest
that the neuroprotective effects of hypothermia are negated
if cooling is used on non-sedated animals [21,22]. Other
side effects include increased risk of infection, cold diuresis
and hypovolemia, electrolyte disorders, insulin resistance,
impaired drug clearance, and mild coagulopathy [15].

Therapeutic hypothermia: molecular mechanisms
Therapeutic hypothermia-induced cellular protection
against anoxic brain injury is a global process affecting
multiple molecular and cellular mechanisms. Cooling re-
sults in a 6% to 10% decrease in cerebral metabolism for
every 1°C reduction in body temperature [23]. Therefore,
a thorough understanding of the underlying mechanisms
of protection induced by therapeutic hypothermia is vital
for designing appropriate and effective treatments. Insuf-
ficient knowledge of the physiological changes and side
effects that occur during mild (34°C to 35.9°C), mode-
rate (32°C to 33.9°C), moderate-deep (30°C to 31.9°C),
and deep (<30°C) hypothermia is likely to lead to lower
therapeutic efficacy or even failure of treatment [15].
Ischemic brain injury, reperfusion injury, and secondary

brain damage are the three main categories of temperature-
dependent injury processes that can be effectively mitigated
by mild to moderate hypothermia. Due to the broad effects
of hypothermia, it is more clinically effective than treat-
ments that focus on blocking just one of these processes.
Variable factors such as type of injury (traumatic versus

pure ischemia) and patient physiology (genetic factors,
age, gender, etc.) all contribute to the complicated injury
processes. Although the window of opportunity to initiate
hypothermic treatment as well as the duration of cooling
to achieve full efficacy may vary, the success or failure of
therapeutic hypothermia treatment is dependent on the
following four key factors [24,15]:

1. Rate of cooling - rapid initiation of cooling immediately
after injury resulted in better outcomes in animal
studies. A concept summarized by the phrase
‘time is brain’.

2. Duration of cooling - dependent of severity of injury
and the time allotted to achieve target temperature.

3. Rate of rewarming - slow rewarming is critical to
not reactivate initial injury processes.

4. Management and prevention of side effects.

Apoptosis and mitochondrial dysfunction
Ischemia/reperfusion injuries can lead to cellular necro-
sis or apoptosis, also referred to as programmed cell
death. The development of apoptosis is dependent on
several cellular processes, including mitochondria dys-
function, activation of caspase enzymes, and other cellu-
lar energy metabolism disorders. Hypothermia has been
observed to affect almost all of these injury processes,
thereby preventing the initiation or interrupting the
early stages of the apoptotic pathway [25]. The window
of opportunity to initiate therapeutic hypothermia to
mitigate apoptosis after anoxia is broad, as apoptosis be-
gins relatively late and continues for a long duration.
Therefore, mitigating the effects of these injury pro-
cesses of the apoptotic pathway is a viable treatment for
neuroprotection in patients.
Interrupted blood supply to the brain causes an immedi-

ate reduction in ATP and phosphocreatine, initiating a
switch in intracellular metabolism to anaerobic glycolysis
[26]. As a result, intracellular levels of inorganic phos-
phate, lactate, and H+ are dramatically increased, leading
to both intracellular and extracellular acidosis and calcium
(Ca2+) influx into the cells [27]. To further exacerbate the
injury process, acidosis and the lack of ATP inhibit cellular
mechanisms normally responsible for controlling exces-
sive intracellular Ca2+, such as ATP-dependent Na+/K+

pumps and Na+, K+, and Ca+ channels [28]. The excess in-
flux of Ca2+ eventually leads to mitochondria dysfunction
and activation of the caspase-9 intrinsic apoptotic path-
way. Data from experimental studies have proven that
hypothermia has a beneficial impact on the ion pump dys-
function and reduces the influx of calcium into the cells,
thereby decreasing neurotoxicity [28,29].

Inflammation
Ischemia/reperfusion injury stimulates innate immune
responses, which can lead to secondary brain injury. It
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triggers the release of pro-inflammatory cytokines (i.e.
IL-1β, TNFα, and IL-6) [30], the chemokine MCP1 [31]
and pro-inflammatory mediators (ROS and NOS) in
microglia, and circulating leukocytes [32]. Hypothermia
attenuates many aspects of this pro-inflammatory im-
mune response, but it also reduces the expression of
some anti-inflammatory cytokines (IL-10 and TGFβ) [33].
Animal studies showed controversial effects of hypothermia
on NF-κB, a transcription factor that plays a central role in
regulating the inflammatory responses [34-37]. Yenari et al.
showed that mild hypothermia decreased NF-κB transloca-
tion and activation in rodents [37]. In contrast to Fairchild
et al. who showed in cell culture studies after moderate
hypothermia a prolonged accumulation of NF-κB in the
nucleus. These findings were explained with a delayed
phosphorylation of IκBα, the cytosolic inhibitory protein of
NF-κB. The Janus kinase (JAK) and signal transducer and
activator of transcription pathway (STAT) is a common sig-
naling pathway used by many cytokines. Ischemia leads to a
JAK2 and STAT3 activation mediated by IL-6. Inhibiting
this pathway resulted in a decreased number of apoptotic
cells [34]. Mild hypothermia attenuates STAT3 expression
which might be a possible mechanism of hypothermia-
induced neuroprotection [38].

Blood-brain barrier disruption
Mild to moderate hypothermia has been shown to signifi-
cantly reduce blood-brain barrier disruptions following
ischemia-reperfusion injury by decreasing vascular perme-
ability, resulting in decreased edema formation [39-41].
Specifically, hypothermia suppresses the activation of
matrix metalloproteinases (MMPs) responsible for deg-
radation of the extracellular matrix while increasing the
expression of endogenous MMP inhibitors, such as metal-
loproteinase inhibitor 2 (TIMP2) [42]. As a result, the
structural proteins and cells that constitute the BBB are
preserved and the opening of water channels is prevented.

Free radical production
The inflammatory response induced by ischemia/reperfu-
sion injury usually coincides with the production of free
oxygen radicals such as superoxide (O2

−), peroxynitrite
(NO2

−), hydrogen peroxide (H2O2), and hydroxyl radicals
(OH−) [43]. The extent of free radical production follow-
ing ischemia/reperfusion is so large that protective cellular
antioxidant mechanisms are overwhelmed, resulting in
peroxidation of lipids, proteins, and nucleic acids [27]. Al-
though hypothermia cannot completely diminish free rad-
ical production in injured cells, it can significantly reduce
the amount of free radicals enough to allow for the en-
dogenous antioxidant mechanisms to mitigate the oxida-
tive damage. In addition, the suppression of free radical
production has been observed to be linearly proportional
to the decrease in temperature [28].
Rescue gene RBM3
Although hypothermia reduces cellular metabolism and
down-regulates global protein synthesis in mammalian
cells, a small subset of cold-shock proteins are induced by
low temperature. RNA-binding motif protein 3 (RBM3), a
member of the glycine-rich RNA-binding protein (GRP)
family, is one of the first proteins synthesized in response
to hypothermia [44] and hypoxia [45]. Additionally, RBM3
expression is elevated in response to NMDA-type glutam-
ate receptor activation [46]. Mild hypothermia is sufficient
to induce the expression of RBM3 [44], while elevated
temperature has been shown to suppress RBM3 expression
[47]. We observed that RBM3 expression is induced by
moderate hypothermia (33.5°C) in murine organotypic hip-
pocampal slice cultures (OHSCs) and hippocampal neu-
rons (HT-22), but not by deep hypothermia (17°C) nor in
microglia cells (BV-2) at both cooling temperatures [48].
Although many studies on RBM3 have been focused

on their regulation in non-neuronal cells in response to
hypothermia and other stress factors [44], there is grow-
ing interest in their role as effectors in therapeutic
hypothermia-induced neuroprotection. RBM3 is widely
expressed during the early stages of brain development,
especially in the first to second postnatal weeks, where it
is dynamically regulated [49]. Recent studies have con-
cluded that RBM3 has anti-apoptotic functions and can
enhance cell proliferation [50]. RBM3 is induced by hyp-
oxia independent of HIF-1 [45], which itself is suppressed
by mild hypothermia [51]. Furthermore, RBM3 has been
shown to play a major role in promoting translation in
neuronal cells, and recently, RBM3 up-regulation in neur-
onal cells in response to hypothermia has been implicated
in hypothermia-induced neuroprotection [52].

Drug-induced hypothermia
Drug-induced hypothermia may serve as an alternative
to physical hypothermia, which can be technically tedi-
ous to apply and may cause serious side effects. Animal
studies have shown that hypothermia is induced by syn-
thetic cannabinoid CB1 agonists WIN55212-2 and HU-
210. Intramuscular injection of WIN55212-2 induced
rapid and prolonged hypothermia in a dose-dependent
manner in rats [53], and HU-210 was observed to be
protective against ischemic damage by reducing infarct
volumes and motor dysfunction [54]. In the same study,
HU-210 injected after ischemic onset resulted in deeper
and lengthier hypothermia.

Conclusions
Temperature management continues to play an important
role in the treatment of patients suffering from neuro-
logical injuries. Therapeutic hypothermia and it's proven
ability to attenuate post-ischemic injury represents a
quantum leap in the clinical setting [15], but more work is



Schmitt et al. Molecular and Cellular Pediatrics 2014, 1:7 Page 4 of 5
http://www.molcellped.com/content/1/1/7
needed, particularly in infants and children suffering
from asphyxial cardiac arrest. Additionally, the induced
hypothermic effects of cannabinoid CB1 receptor ago-
nists, WIN55212-2 and HU-210, as alternatives to or in
combination with therapeutic hypothermia also warrant
further investigation. The full beneficial effect of cooling
remains to be discovered as we optimize the process by
expanding our knowledge of the basic mechanisms, verify
the treatment windows, and improve the cooling and
monitoring devices in the coming years.
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