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Abstract 

Regulatory T cells (Tregs) are a specialized subgroup of T‑cell lymphocytes that is crucial for maintaining immune 
homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be 
subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from con‑
ventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs 
and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific 
characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, 
plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional stud‑
ies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding 
of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge 
of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune 
disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment 
options.
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Background
The immune system is a complex network of cells and 
molecules that defends the body against harmful patho-
gens while maintaining self-tolerance. This delicate bal-
ance is orchestrated by various cell types, including T 

cells, which play a central role in adaptive immunity. Reg-
ulatory T cells (Tregs) are a specialized subset of T lym-
phocytes that play a pivotal role in maintaining immune 
system homeostasis and preventing excessive immune 
responses such as autoimmune diseases. More than four 
decades ago, Tregs emerged as a cornerstone of immu-
nological research. Tregs encompass a heterogeneous 
population of cells with varying origins and functions. 
Functionally, Tregs constitute the physiological counter-
players of conventional or cytotoxic T cells and crucially 
contribute to the maintenance of peripheral immune tol-
erance [1]. Since their identification by Sakaguchi et  al. 
in 1995, regulatory T cells have grown into a large and 
complex family of regulatory cell populations. Among 
these, thymically derived Tregs (tTregs), which develop 
within the thymus before being released into the periph-
ery, represent the majority of peripheral FoxP3 + Tregs. 
In contrast, peripherally induced Tregs (pTregs) develop 
from mature conventional  FoxP3−CD4+ T cells upon 
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continuous antigen stimulation in peripheral tissues. 
During this process, conventional T cells acquire regu-
latory properties directed by multiple factors, includ-
ing the presence of certain cytokines and the formation 
of cellular synapses between various immune cells. This 
duality highlights the dynamic nature of Treg develop-
ment and its adaptability to various immunological con-
texts. Within this review we will summarize biology and 
functions of Tregs and present the current understand 
of Tregs deficiencies in monogenetic immunodeficiency 
and multifactorial autoimmune diseases. Additionally, 
we will discuss novel therapeutic approaches using Tregs 
as target or agent to overcome currently unmet medical 
needs.

Treg biology and function
The functional characteristics of tTregs and pTregs over-
lap but differ in terms of their stability. pTregs show a 
high plasticity and exert regulatory functions only tem-
porarily by transient expression of FoxP3 and additional 
regulatory elements, which induce the formation of reg-
ulatory cytokines [2, 3]. In contrast, tTregs express high 
levels of FoxP3 [4] and IL2R alpha chain CD25, but low 
levels of IL-7 receptor CD127. These characteristic ele-
ments are critical for the development, function, and 
homeostasis of tTregs and are tightly linked to their regu-
latory stability irrespective of the immunologic milieu 
[5, 6]. However, despite substantial efforts and the dis-
cussion of various promising candidates, a phenotypic 
marker or marker combination that is uniquely expressed 
by tTregs or allows the discrimination between tTregs 
and pTregs has not yet been identified [7].

In humans, Tregs constitute only 3–10% of the naïve 
peripheral  CD4+ T-cell population. During embryo-
genesis, Tregs are present within the thymus at 12 ges-
tational weeks and remain stable throughout pregnancy 
and infancy [8]. Fetal tTregs already express FoxP3 and 
other markers characteristically linked to their early 
established immunosuppressive phenotype, e. g. the cyto-
toxic T-lymphocyte-associated protein 4 (CTLA-4) and 
glucocorticoid-induced TNFR-related protein (GITR) 
[8, 9]. To protect the human body from autoimmunity, 
tTregs possess a T-cell receptor (TCR) with a specific 
affinity for autoantigens [10]. TCR-dependent maturation 
is mediated by the thymic selection process of tTregs, 
which focuses on self-protection through the presenta-
tion of autoantigens. The presentation of various self-
peptides, the so-called tissue-specific antigens (TSA), in 
medullary thymic epithelial cells (mTECs) is regulated by 
the transcription factor AIRE (Autoimmune Regulator) 
and the zinc finger protein Fezf2 [11, 12]. T-cell selec-
tion and maturation in a TSA-rich environment ensures 
immunological self-tolerance. Only T cells bearing TCRs 

with an intermediate affinity for self-peptides differen-
tiate into tTregs. In contrast, T cells are deleted if they 
recognize self-peptides with a high-affinity TCR or differ-
entiate into naïve  CD4+ T cells if self-peptides are recog-
nized with low-affinity TCRs [7, 13–16]. This leads to the 
effect that pTreg TCRs have a low affinity towards self-
antigens but a high affinity for foreign antigens, for exam-
ple, microbial structures. Sequencing analysis of tTregs, 
pTregs, and conventional T-cell populations revealed that 
clonal overlap between these populations is particularly 
low [17–20]. The close link between thymic maturation 
and stable expression of FoxP3 has been demonstrated 
to result from a unique pattern of DNA demethyla-
tion within an enhancer element of the FoxP3 promoter 
region (regulatory T-cell–specific demethylated region 
[TSDR]) and activation of histone modifications [21–24]. 
However, even before FoxP3 is functionally expressed, 
Treg-specific super-enhancers and additional tTreg sig-
nature genes, including CTLA-4, IL2RA, which encodes 
the IL-2 receptor CD25, and IKZF2, encoding the tran-
scription factor Helios and IFZF4, encoding Eos, are acti-
vated in Treg progenitor cells [25]. During this process, 
Satb1, a genome stabilizer, binds to specific genomic 
sites and supports the opening of chromatin and activa-
tion of super-enhancers. Together with the histone lysine 
methyltransferase MLL4 [26], Satb1 binds to conserved 
enhancer regions within the FoxP3 promoter, such as 
CNS0, CNS3, and CNS2, and induces stable activation of 
these enhancers, as well as the FoxP3 promoter itself [25, 
27, 28]. After thymic release, tTregs reside within lymph 
nodes and peripheral blood. Continuous recognition of 
self-antigens maintains tTregs in a highly proliferative 
state and mediates physiological immune homeostasis. 
Expression of CCR7 and CD62L in naive tTregs and ena-
bles Treg homing to the secondary lymphoid organs [29]. 
There, tTregs—similar to other T-cell subsets—undergo 
peripheral maturation from naïve  (TN  CD45RA+CCR7+) 
to central memory  (TCM,  CD45RA−CCR7+), effector 
memory (TEM,  CD45RA−CCR7−) and finally CD45RA 
expressing terminally differentiated effector memory 
cells  (TEMRA,  CD45RA+CCR7−) [30–34]. Tregs further 
employ a broad range of chemokine receptors and adhe-
sion molecules for recruitment to inflammatory sites. The 
release of attractive chemokines at these sites induces 
Treg migration along a chemotactic gradient. CCR2, 
CCR4, and CCR5, and particularly CXCR3, CCR6, and 
CCR8, support recruitment towards sites dominated by 
Th1, Th2, and Th17 inflammation [35, 36]. The inflamma-
tory response and recruitment of Tregs are further sup-
ported by other T-cell subsets and macrophages through 
the release of IL-2, IL-35, or TGF-β. These not only 
enhance the recruitment, function, and survival of Tregs, 
but also support the polarization of naïve  CD4+ T cells 
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towards pTregs [2]. Conversely, immunosuppressive mol-
ecules, including IL-10, IL-35, and TGF-β, are induced in 
Tregs, which themselves promote crucial survival signals 
to sustain Tregs in peripheral tissues and mediate non-
specific anti-inflammatory signals [37].

Both tTregs and pTregs act as inhibitory immunomod-
ulators through several cell–cell contact-dependent 
and -independent mechanisms, including inhibition of 
effector cell proliferation, targeted T-cell cytolysis, ATP 
consumption (metabolic disruption), and alteration 
of antigen presentation by macrophages and dendritic 
cells Fig.  1. Although cytotoxicity is characteristically 

attributed to conventional  CD8+ T cells, Tregs have been 
observed to use Granzyme B and Perforin-mediated 
cytolysis of target T cells as additional MHC/TCR-inde-
pendent mechanisms to control inflammation [38–40]. 
Activation induced expression of CTLA-4 orchestrates 
broad antigen-specific suppressive functions of Tregs 
in a contact-dependent fashion [37, 41]. CTLA-4 com-
petitively binds to CD80/CD86 on APCs, including 
B cells and dendritic cells [37, 42] and thereby reduc-
ing the CD28-mediated co-stimulation of conventional 
T-cells (Tconv). CLTA-4 binding to DCs further reduces 
the density of antigen-specific MHC-II and CD80/86 on 

Fig. 1 Suppressive Mechanisms of Tregs. Tregs‑mediated immune regulation occurs by various cell‑contact dependent and contact‑independent 
mechanisms. Anti‑inflammatory cytokines, such as TGF‑β, IL35, and IL‑10, modulate conventional T cells and monocytes towards immunotolerant 
states. Secretion of Perforin and Granzyme directly targets effector cells and induces apoptosis. By contact‑dependent interaction via PD‑1/
PD‑1L, MHC‑II/TCR and CTLA4/CD80/CD86 Tregs prevent costimulatory signals in conventional T cells and downregulate the expression of MHC‑II 
and CD80/86 on APCs. Similarly, binding of CTLA‑4 to CD80/86 on APCs induces the expression of IDO, converts tryptophan to kynurenine 
and thereby further suppresses the activation of conventional T cells and promotes regulatory the exertion function in various cell types. 
Characteristically, high expression of CD25 on Tregs enables Tregs to sequester IL‑2 from the environment, thereby limiting IL‑2‑mediated activation 
of conventional T cells. Metabolic deprivation is further enhanced by the expression of CD39 on Tregs, which converts ATP to AMP, reducing T‑cell 
proliferation. Tregs may further reduce monocyte differentiation toward pro‑inflammatory monocytes and promote M2 macrophage development
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DC via trans-endocytosis [43–46]. Thus, DC lose their 
capability for MHC-II-mediated antigen-specific acti-
vation and T-cell co-stimulation. Antigen presentation 
on DCs is further reduced by CTLA-4 mediated induc-
tion of indoleamine 2,3-dioxygenase (IDO) in DCs. IDO 
leads to tryptophan depletion and accumulation of the 
tryptophan metabolite kynurenine, which (i) mediates 
suppression of proliferation and activation of effector T 
cells and (ii) promotes differentiation of other immune 
cells towards a regulatory phenotype [47]. Accordingly, 
monocytic differentiation is shifted towards anti-inflam-
matory M2 macrophages, while differentiation to pro-
inflammatory M1 macrophages and Th17-cell expansion 
is inhibited [48–50]. The expression of additional inhibi-
tory surface molecules further contributes to the contact-
dependent inhibition of T cells, B-cell and DCs. Among 
these, PD-1/PD-1L interaction induces phosphorylation 
of ITSM, which downmodulates intracellular cascades 
including TCR-, PI3K/AKT-, and Ras/MEK/ERK-sign-
aling and represses T- and B-cell proliferation [51–54]. 
Additional metabolic pathways used by Tregs not only 
induce peripheral Treg differentiation and proliferation 
but also deprive effector T cells of key nutrients, includ-
ing the degradation of ATP to adenosine by CD39/CD73 
and the competitive consumption of key nutrients such as 
glucose or amino acids [55, 56]. While all T cells express 
dimeric IL-2 receptors consisting of the γ-chain CD132 
and IL2Rβ subunit CD122 with an intermediate IL-2 
affinity, Tregs are characterized by the additional and 
constitutive expression of the high-affinity IL2Rα subunit 
CD25. This trimeric receptor is characterized by an ca. 
1000-fold higher affinity for IL-2. Thus, the expression of 
CD25 confers a selection advantage during thymic Treg 
differentiation and induces FoxP3 expression early dur-
ing Treg development. The phenotypic characteristics of 
particularly high CD25 expression further correlate with 
the exertion of regulatory functions. In the periphery, 
Treg survival and proliferation are strictly dependent on 
IL-2 produced by activated conventional T cells. Intracel-
lularly, IL-2R signaling in Tregs has recently been shown 
to be crucially involved in the JAK-STAT5 pathway. Acti-
vated transcription factor STAT5 translocates to the 
nucleus and mediates the induction of CD25 and FoxP3. 
In addition to the crucial role of CD25 in Treg differen-
tiation and maintenance, extracellular CD25 mediated 
consumption of IL-2 adds to the key repertoire of Treg 
mechanisms for suppressing  CD8+ T-cell proliferation 
[57]. In contrast, inhibition of  CD4+ T cells has recently 
been shown to require IL2R mediated activation of Tregs 
but to occur independently of extracellular IL-2 depriva-
tion [57]. The situation in pTregs however is different as 
pTregs may modulate their phenotype and function in 
response to the microenvironment. In a Th1-mediated 

milieu, which is characterized by the release of IFN-γ, the 
expression of the transcription factor T-bet is induced in 
Tregs. Expression of T-bet (T-box expressed in T cells, 
also called T-box transcription factor TBX21) promotes 
the expression of the chemokine receptor CXCR3 and 
accumulation of Tregs at Th1-cell rich inflammatory 
sites [58]. In contrast, in a Th-2-rich environment the 
transcription factor GATA-3 is upregulated and main-
tains high levels of FoxP3 expression in pTregs [59]. This 
enables pTregs to contain excessive pro-inflammatory 
polarization and promote the accumulation of pTregs at 
Th-2 inflammatory sites [59, 60].. Further, although the 
expression of the transcription factors IRF-4 [61] and 
STAT3 [62] is typically assigned to Th-2 and Th-17 cells, 
respectively, both can be induced in Tregs and enhance 
their immunomodulatory potential when Th17-cells 
dominate inflammation [62–64]. In summary, the micro-
milieu substantially influences how pTregs can modulate 
their phenotypic and functional phenotype, while tTregs 
are characterized by an exceptionally high stability.

Monogenetic treg deficiencies
Numeric or functional Treg deficiencies due to monoge-
netic variations in the human genome lead to the clinical 
phenotype of primary immunodeficiency, with predomi-
nant signs of polytopic immune dysregulation. Although 
the clinical phenotype overlaps for various Tregs defi-
ciencies, understanding the underlying molecular defect 
is important in order to tailor and select appropriate dis-
ease-specific therapeutic approaches.

IPEX‑syndrome due to FoxP3 deficiency
The clinical picture of the most profound monogenetic 
Treg deficiency, named X-linked immune dysregula-
tion, polyendocrinopathy and enteropathy (IPEX) syn-
drome was first described by Powell et  al. in 1982. The 
authors reported a family with 19 affected males from 
one large family, of whom only two survived the first 
decade. All affected individuals suffered from severe 
eczema, enteropathy, thyroiditis, type I diabetes, auto-
immune cytopenia and immunodeficiency [65]. Later 
reports added antibody-mediated intestinal villous atro-
phy, eosinophilia, high IgE levels, lymphoid hyperplasia, 
islet-cell hypo- or aplasia, arthritis, kidney involvement, 
and severe immunodeficiency [66–72]. The scurfymouse 
model mimics X-linked disease with a clinical pheno-
type similar to that of patients with IPEX, such as scaly 
skin, runting, diarrhea, lymphadenopathy, hepatospleno-
megaly, and progressive anemia. Even before the molec-
ular cause of IPEX syndrome was identified, this mouse 
line served as a helpful model for the pathophysiological 
understanding of IPEX syndrome [73–75]. At the cellu-
lar level,  CD4+ lymphoproliferation, lymphocytic tissue 
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infiltrates, and elevated proinflammatory cytokine lev-
els characterize the disease [73–75]. However, it was not 
until the early 2000s that the genetic defect, localized in 
the centromeric region of the X chromosome (Xp11.23-
Xq13.3) was identified [71] and closed the pathophysi-
ological loop between the clinical presentation of IPEX 
disease, the crucial role of FoxP3 signaling and regulatory 
T cells functions [4, 6, 76]. Since then, IPEX syndrome is 
also named according to the molecular defect as FoxP3 
deficiency. Independent of the genetic mutation, the clin-
ical presentation of patients with IPEX varies substan-
tially. In a cohort of 96 IPEX patients, 39 had neonatal 
onset of enteropathy, type I diabetes, and eczema, and in 
less than half of the patients, nephropathy, autoimmune 
cytopenia, hepatitis, or thyroiditis. Only a few patients 
present with arthritis, alopecia, lymphadenopathy, or 
neutropenia [77]. Vice versa type I diabetes may be the 
only clinical sign at time of diagnosis [78, 79].

Meanwhile, numerous additional monogenetic diseases 
that lead to clinically relevant Treg deficiency have been 
described. These diseases share mutations in individual 
genes encoding proteins that crucially support regulatory 
T-cell functions. In the last update in 2022, the Interna-
tional Union of Immunological Societies (IUIS) classified 
these pathologies as diseases of immune dysregulation, 
summarized in the IUIS group IV. Most of these dis-
eases result from monogenetic loss-of-function muta-
tions (LOF), e. g. in FOXP3, CD25, LRBA, CTLA4, AIRE, 
IL-10, IL-10R, STAT5B, or BACH2. Additionally, gain-of-
function mutations (GOF) in STAT3, may lead to a simi-
lar phenotype. However, as the genetic and phenotypic 
heterogeneity of Treg deficiencies makes the clinical 
diagnosis difficult, the term “Tregopathies” has been aptly 
established [80]. Laboratory findings in patients with 
numeric or functional Treg deficiencies are only indica-
tive and require specific Treg staining because lympho-
cyte distribution frequently shows largely normal results. 
Furthermore, despite the shared clinical characteristics of 
genetically different Treg pathologies, understanding the 
underlying functional pathomechanisms to direct target-
specific therapies is crucial.

CTLA4‑deficiency
As a member of the immunoglobulin superfamily and 
a costimulatory molecule that transmits inhibitory sig-
nals to T cells, CTLA-4 is a key element in Treg-medi-
ated immune regulation [4, 81]. The phenotypic overlap 
between FoxP3, CTLA-4 and also TGF-β deficiency 
was first described in mice [82–85]. Tregs are severely 
impaired in patients with CTLA4 haploinsufficiency. 
The clinical phenotype is dominated by immune dys-
regulation with autoimmunity, immunodeficiency, and 
lymphoproliferation (IDAIL) but shows a highly variable 

presentation [86–90]. Based on its genotypic background, 
this syndrome is also referred to as CHAI (CTLA-4 Hap-
loinsufficiency with Autoimmune Infiltration). Although 
late disease onset is possible, most patients report their 
initial clinical signs during early childhood. In a cohort of 
133 patients from 54 unrelated families with genetically 
confirmed CTLA4 deficiency initial symptoms included 
autoimmune cytopenia (33%), respiratory manifestations 
(21%), enteropathy (17%), type 1 diabetes (8%), neuro-
logic symptoms (seizures and headache (6%)), thyroid 
disease (5%), arthritis (3%), growth retardation, fever or 
night sweats, atopic dermatitis, or alopecia [87]. The pat-
tern of lymphocytic organ infiltration was found to be 
heterogeneous, even among members of the same fam-
ily [86–89]. Susceptibility to infection in CHAI reflects 
the characteristics of combined immunodeficiency with 
infections predominantly caused by Hemophilus influ-
enzae, pneumococci, Salmonella enteritidis, and fun-
gal species. Both EBV and CMV infections may affect 
multiple organs and typically recur [87]. While the fre-
quency of circulating FoxP3 + Tregs may be normal 
or even increased, the expression of both CLTA-4 and 
FoxP3 is substantially reduced and must be specifically 
requested during immunological workup. Insufficient 
CTLA-4-mediated T-cell inhibition results in increased 
T-cell activation and the loss of naive CD45RA +  CD4+ 
T cells. Dysregulated activation of the T-cell compart-
ment contributes to autoimmune manifestations and 
uncontrolled lymphoproliferation. Without sufficient 
control of non-specific T-cell activation, pathogen-spe-
cific immune responses and lymphocytic maturation are 
compromised. Altered T-/B-cellular interactions may 
result in hypogammaglobulinemia and the formation 
of autoreactive antibodies [87, 88, 90]. Similar to Foxp3 
deficiency, pathogenic mutations in DEF6 may lead to a 
secondary CTLA-4 deficiency [91]. The guanine nucleo-
tide exchange factor DEF6, also known as IRF-4 bind-
ing protein (IBP), interacts downstream of TCR with 
the GTPase RAB11 and is crucially involved not only in 
CTLA-4 availability and trafficking, but also in multiple 
processes of the innate and adaptive immune system, 
particularly T-cell differentiation, expansion, and matura-
tion [91, 92].

LRBA deficiency
CTLA4 recycling to the cell surface is further depend-
ent on lipopolysaccharide-responsive and beige-like 
anchor protein LRBA. LRBA deficiency, which is typi-
cally associated with autoantibodies, regulatory T (Treg) 
cell defects, autoimmune infiltration, and enteropathy 
(called LATAIE) was first described in 2012 [93, 94]. 
Although the initial clinical manifestation within the first 
four years of life is dominated by autoimmunity including 
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antibody-mediated cytopenia or endocrinopathy (42%), 
chronic diarrhea (27%) recurrent infections particularly 
of the respiratory tract (16%) and lymphoproliferation 
(5%), other signs of manifestation should not be missed 
[95]. The latter may include asthma and allergies, fever or 
unspecific failure to thrive. Later, autoimmunity (82%), 
enteropathy (63%), splenomegaly (57%) and pneumonia 
(49%) dominate the clinical course of disease [95],, but 
are accompanied by lymphadenopathy and lymphocytic 
tissue infiltration [96–99]. Homozygous mutations in the 
LRBA gene result in the loss of LRBA and impaired cellu-
lar signalling, dysfunctional vesicular trafficking, and lys-
osomal degradation of CTLA-4. Tregs in LRBA deficient 
patients are both numerically and functionally reduced 
with decreased expression of the most important Treg 
markers FoxP3, CD25 and CTLA4 [97]. The suppres-
sive capacity of LRBA-deficient Tregs is significantly 
impaired, although IL-10 production seems to increase 
compared to healthy controls [97]. Uncontrolled T-cell 
activation leads to a loss of naivety and enhanced T-cell 
turnover. Dysregulated T follicular helper cells and defec-
tive B-cell activation result in peripheral B-cell lympho-
penia and early-onset hypogammaglobulinemia, which 
seems to be the primary cause for recurrent respiratory 
tract infections [100]. At the same time functional Treg 
deficiency promotes the development of autoantibodies 
[97, 100].

IL‑2 signaling deficiencies
Signaling events within the IL-2 pathway crucially 
involve the IL-2 receptor CD25 and the transcription fac-
tors STAT3, STAT5B and FoxP3. CD25 deficiency due to 
homozygous mutations in the IL-2 receptor alpha chain 
(IL2RA) was first described in 1997 by Sharfe et al. in a 
child with increased susceptibility to viral, bacterial, and 
fungal infections, lymphoproliferation and chronic lung 
disease [101]. As CD25 is critically involved in global 
T-cell activation, CD25 deficiency not only results in 
reduced and functionally impaired Tregs and autoim-
munity but also in profound T-cell proliferation deficits 
and nonspecific lymphoproliferation [101–104]. In the 
absence of functional CD25, IL-2-mediated Treg differ-
entiation and maturation is hampered, leading to sub-
stantially reduced and dysfunctional Tregs and increased 
numbers of autoreactive T cells [104]. Although the 
clinical picture of CD25 deficiency varies with respect 
to the sites of manifestation and severity, the triad com-
prising immune dysregulation, autoimmunity, and 
severe susceptibility to viral, bacterial, and fungal infec-
tions has been described almost all patients [101–105]. 
The profoundness of this disorder is not only indicated 
by the manifestation severity but also by the early onset 
of the disease (mean 1.25 months) [106]. As the disease 

progresses, autoimmune-mediated cytopenia, hepatitis, 
pneumopathy and small vessel pulmonary vasculitis may 
occur [102, 105, 107]. Closely related, impaired IL-2 sig-
nalling may be caused by a homozygous mutation in the 
IL2RB (CD122) gene [108]. Affected individuals present 
with life-threatening immune dysregulation, including 
nonspecific but severe lymphoproliferation, enteropathy, 
eczema, and susceptibility to viral infections, particularly 
CMV, during early infancy [108, 109]. The immunological 
phenotype further includes impaired NK cell differentia-
tion despite increased peripheral NK cell frequencies and 
combined immunodeficiency with hypergammaglobu-
linemia and autoantibody formation [108, 109].

IL‑10/IL‑10R deficiencies
As IL-2 responsiveness is important for IL-10 induction 
in  CD4+ T cells, patients with CD25 deficiency share 
severe and early onset inflammatory bowel disease with 
patients suffering from IL-10 or IL-10R (IL-10RA or IL-
10-RB) deficiency [102, 110–112]. IL-10 is involved in 
the development and maintenance of Tregs and supports 
Treg-mediated suppression of pathogenic Th-17 cells in a 
STAT3 dependent manner [62, 113]. In in a cohort of 286 
patients with IL-10/IL-10R deficiency, gastrointestinal 
disorders occurred in all patients with perianal manifes-
tations (92%), fistulae (60%), and colitis (50%) being the 
most prominent signs, Interestingly, perianal abscesses 
(57%) and complications beyond the gastrointestinal 
tract including failure to thrive (58%), susceptibility to 
infections (≤ 23%), lymphoproliferation (≤ 12%), derma-
tologic manifestations (49%), or rheumatologic disorders 
(13%) were strictly linked to IL-10R deficiences and did 
not occur in IL-10 deficient patients [114].

STAT3 and STAT5B signaling deficiencies
Downstream of the IL-2 and IL-10 receptor STAT3 acts 
as transcription factor that orchestrates multiple cellular 
functions. Furthermore, STAT3 acts as a key regulator in 
multiple signaling cascades downstream of e. g. recep-
tors that involve the common gamma chain (IL-2, IL-4, 
IL-9, IL-15, IL-21) [115–119], receptors of the interferon 
family [120] and hormone receptors. Upon receptor acti-
vation STAT3 is phosphorylated in a JAK-dependent 
fashion and subsequently translocates to the nucleus 
where it binds as homo- or heterodimer to responsive 
elements triggering the transcription of cytokine respon-
sive genes [121]. Loss of function mutations result in 
early-onset eczema, bacterial and fungal infections par-
ticularly of the skin and the lung, facial dysmorphism and 
joint hyperextensibility accompanies by elevated serum 
IgE levels [122]; but autoimmune phenomena are very 
rare [123]. In contrast, gain-of-function mutations in 
STAT3, which follow an autosomal inheritance, usually 
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manifest during early childhood as a poly-autoimmune 
disease with lymphoproliferation, polyendocrinopa-
thy, enteropathy, cytopenia, and severe interstitial lung 
disease. Further, increased susceptibility to infections, 
eczema, and short stature has been reported in these 
patients [124–127]. The functional details of enhanced 
STAT3 are only partially understood and the cellular 
phenotype in STAT3 GOF patients seems heterogeneous, 
but absolute T-cell and B-cell numbers are characteristi-
cally reduced, and frequently associated with hypogam-
maglobulinema and impaired antigen-specific B-cell 
maturation and hypogammaglobulinemia [124–126]. At 
the molecular level, activated STAT3 induces the expres-
sion of SOCS3, an inhibitor of STAT5 [128]. Accordingly, 
STAT3 GOF mutations result in secondary STAT5b 
deficiency [128]. As STAT5 itself is a crucial transcrip-
tion factor for the expression of FOXP3, reduced FoxP3 
expression can be observed in most patients with STAT3 
GOF, and Tregs are functionally impaired [129–132]. This 
further explains why GOF mutations in STAT3 and LOF 
mutations in STAT5B share not only multiple aspects 
of the immunological IPEX-like phenotype including 
severe immune dysregulation but is also characterized 
by short stature due to (partial) growth hormone insen-
sitivity [128, 133–137]. The clinical picture caused by 
pathogenic STAT5B mutations further includes severe 
pneumopathy, variable immunodeficiencies associated 
with susceptibility to severe sinopulmonary, dermal, and 
gastrointestinal infections. Initially described to follow 
an autosomal-recessive (AR) inheritance [134], STAT5B 
LOF mutations were identified to also occur as autoso-
mal-dominant (AD) negative pathogenic variants in 2018 
[137]. While growth retardation and eczema frequently 
occur in both AR and AD disease, additional clinical fea-
tures occur not only in milder manifestations but also 
in less than 10% of patients with AD disease [106, 138]. 
The latter might explain why only few cases have been 
reported so far and suggests a high number of unrecog-
nized cases. In summary, although defects in the IL-2 sig-
nalling pathway share many clinical features, depending 
on the defective molecule clinical phenomena differ in 
terms of the severity and frequency. For example, while 
eczema is with a prevalence of > 50% similarly frequent in 
patients with LOF mutations in FOXP3, CD25, STAT5B 
or GOF mutations in STAT3, autoimmune phenomena 
including cytopenia, thyroiditis and hepatitis as well as 
lymphoproliferations are characteristic for CD25 defi-
ciency but occur in only less than 10% of patients with 
STAT5 deficiency [106, 129, 135, 139].

CARMIL2 deficiency
Early onset skin lesions, including eczematous der-
matitis associated with chronic mucocutaneous 

candidiasis, molluscum contagiosum bacterial abscesses, 
warts, inflammatory plaques, and hyperkeratosis, are 
characteristic hallmarks of CARMIL2 deficiency. Early 
reports on patients with homozygous CARMIL2 muta-
tions further described a particular susceptibility to EBV 
infections, although recurrent and severe infections by 
other viruses, bacteria, mycobacteria, and fungi may 
occur [140–143]. Secondary to EBV infection, affected 
individuals show an increased risk of EBV-associated 
tumors [142, 144]. The CARMIL2 gene is located on 
chromosome 16q22.1, and encodes the cytosolic protein 
CARMIL2 (Capping Protein Arp 2/3, Myosin-I Linker), 
also known as RLTPR [145], which acts as a scaffold 
bridging the CD28 to CARD11 and NFκB signaling cas-
cades [146]. Functional analysis of  CD4+ and  CD8+ T-cell 
responses confirmed deficient CD3/CD28 costimulation 
in CARMIL2 deficient individuals [143]. While periph-
eral T-, B-, and NK cell counts are typically normal, Tregs 
are profoundly reduced. Due to deficient T-cell matu-
ration, both  CD4+ and  CD8+ T-cell subsets are skewed 
towards naïve forms [140–143]. Within the B-cell com-
partment, class-switched B cells and plasmablasts may be 
reduced and show impaired immunoglobulin formation 
[141, 142]. Clinically, this results in a combined immuno-
deficiency syndrome with profound, early onset skin and 
inflammatory bowel disease and susceptibility to infec-
tions [147–149].

BACH2 deficiency
The transcription factor BACH2, a highly conserved 
basic leucine zipper protein, is a key modulator of mul-
tiple immune processes, including T- and B-cell differ-
entiation and maturation [150–152]. The BACH2 locus 
contains a T-cell super-enhancer that regulates the 
expression of multiple pro-inflammatory cytokines and 
cytokine receptors [153, 154] and thereby reducing effec-
tor T-cell differentiation. In Tregs, BACH2 induces high 
FoxP3 expression, thereby promoting Treg development, 
maturation, and survival [151, 155]. BACH2 haploinsuf-
ficiency causes low Treg frequency and function, while 
differentiation of Th1-cells, which express the intestinal 
homing receptors CCR9 and ITGB7, is enhanced [97]. 
Similarly, the lack of BACH2 mediated repression of 
Th-2 differentiation results in increased Th-2 cytokine 
formation, promoting both airway and bowel inflamma-
tion [156]. As the effects of BACH2 deficiency manifest 
at every level of B-cell development, B-cell maturation 
and IgG class switch are profoundly impaired, resulting 
in increased transitional B-cell numbers, low immuno-
globulins, and inability to generate appropriate antibody 
responses to specific antigens of vaccines. Accordingly, 
the clinical picture of BACH2-related immunodefi-
ciency and autoimmunity (BRIDA syndrome) syndrome 
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is dominated by sinopulmonary infections and autoim-
mune gastrointestinal diseases, which may present early 
in life [154].

Tregs in autoimmune diseases
Unlike monogenetic Treg disorders polygenetic or mul-
tifactorial Treg deficiencies involve a complex interplay 
of multiple genes and environmental factors. Due to the 
multifactorial and polygenetic nature of these diseases 
understanding the interwoven factors contributing to 
the specific pathophysiology remains challenging. As 
mentioned earlier, we now know that Tregs represent a 
diverse subpopulation characterized by distinct tran-
scriptional repertoires influenced by tissue- or context-
specific transcription factors. For example, Tregs residing 
in adipose tissue express the transcription factor PPARγ, 
whereas those critical for driving Th1-type responses 
increase Tbet [58, 157, 158]. However, our current chal-
lenge is to use this knowledge to identify biomark-
ers that indicate Treg function in clinical settings. The 
broad spectrum of Treg functions makes the selection 
of a single marker or in  vitro functional assay challeng-
ing, particularly in the context of a particular disease. 
The difficulties become even greater when assessing Treg 
activities in humans, primarily because of the obstacles 
associated with isolating Tregs from tissues other than 
blood.

Tregs in type 1 diabetes
Type 1 diabetes (T1D) is the best-characterized autoim-
mune disease, and is often referred to as Juvenile Diabe-
tes. It is a persistent autoimmune ailment characterized 
by a targeted immune response driven by both T- and 
B-cells, culminating in the destruction of insulin-pro-
ducing β-cells nestled in the pancreatic islets [159]. T1D 
is one of the most common chronic metabolic diseases, 
affecting approximately 1.5 million people under 20 years 
of age [160]. It is one of the most frequent chronic met-
abolic diseases in childhood and adolescence, with a 
global increase in the incidence rate of 3–4% per year 
and strong regional differences [161]. Many autoimmune 
disorders, including T1D, frequently share disruptions in 
the control of effector cell populations as a fundamen-
tal contributing element [162, 163], and this aberration 
might stem from irregularities in the suppressive func-
tions governed by Tregs.

A significant number of studies have indicated no dis-
parities in peripheral blood Treg frequencies among T1D 
patients [164]. Nonetheless, anomalies in Treg phenotype 
and their suppressive potential have been documented 
[165, 166]. As described above, the challenge of obtaining 
healthy human tissue is particularly daunting when stud-
ying the role and function of Tregs in T1D, as pancreatic 

samples can only be obtained postmortem. Unfortu-
nately, the unavailability of pancreatic samples from T1D 
patients has primarily confined data collection to periph-
eral blood, obscuring whether Tregs actively mitigate 
β-cell destruction or exhibit modified traits within islets 
during disease progression. Consequently, animal models 
such as mice have been harnessed to scrutinize disease 
advancement within the islet microenvironment.

Therefore, non-obese diabetic (NOD) mice are an 
essential model for T1D research. NOD mice sponta-
neously develop autoimmune diabetes, typically com-
mencing at approximately 12 weeks in females, with the 
incidence increasing until approximately 25 weeks [167]. 
Male NOD mice experience delayed onset and progres-
sion of diabetes. The incidence is approximately 70% in 
females and 30% in males, a difference potentially rooted 
in gender-based variances in the gut microbiome and 
hormonal fluctuations [168]. Environmental factors, 
including housing conditions and diet, have been impli-
cated in autoimmune diabetes onset [167]. Genomic 
investigations have identified susceptibility loci termed 
as insulin-dependent diabetes (IDD) loci in NOD mice. A 
plethora of over 40 IDD loci has been cataloged, with the 
major histocompatibility complex (MHC) exhibiting the 
most substantial link to T1D incidence [167, 169, 170]. 
Although the NOD mouse manifests several similarities 
with human T1D, some distinctions persist. Neverthe-
less, NOD mice have emerged as valuable tools for elu-
cidating the role of Tregs in autoimmune diabetes [167].

Undoubtedly, genetic susceptibility constitutes a fun-
damental cornerstone in the evolution of T1D, with a 
significant proportion of susceptible single nucleotide 
polymorphisms (SNPs) being closely linked to immune-
related genes, thereby underscoring immune dysregula-
tion. Particularly noteworthy is the robust correlation 
observed with genes that have considerable influence 
over Treg function, most prominently IL2RA, IL-2, 
PTPN2, CTLA4, and IL-10 [171, 172]. However, trans-
lation of these SNPs into functional outcomes has only 
been achieved in a few studies. Additionally, because 
numerous pivotal genes serve both effector T cell and 
Treg functions, deciphering the relative impact of allelic 
variants on regulatory and effector T cells poses a formi-
dable challenge. Several studies have reported SNP-asso-
ciated impairments in Treg function, with a particular 
emphasis on IL-2 signaling [173–175]. These findings, 
coupled with analogous findings in NOD mice highlight-
ing a deficiency in IL-2 signaling within Tregs, have gal-
vanized efforts to harness this pathway for therapeutic 
intervention [175].

A regrettable adverse facet of low-dose IL-2 therapy, 
which effectively amplified Tregs, was the simultaneous 
escalation of eosinophils and natural killer cells, coupled 
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with a reduction in C-peptide levels [176]. However, 
recent studies on Treg-specific IL-2 administration hold 
promise for overcoming off-target effects [177–179]. Fur-
thermore, novel methodologies geared towards manipu-
lating the pharmacokinetics of IL-2 therapy are expected 
to enhance its efficacy. One notable study employed the 
administration of low-dose IL-2/CD25 fusion protein, 
forestalling diabetes onset and even managing overt dia-
betes in the NOD mouse model of T1D. The augmented 
half-life of this IL-2 analog facilitates prolonged interac-
tion with CD25-expressing Tregs, thereby amplifying 
IL-10 production and encouraging its migration to the 
pancreas [180].

More recently, a study harnessed T-cell population-
specific epigenetic analysis to precisely locate susceptible 
SNPs within enhancer regions pivotal for Treg function in 
autoimmunity [181]. Comparative epigenetic evaluations 
across Treg and conventional T-cell populations revealed 
that autoimmune-associated SNPs were enriched in 
naïve Treg-specific demethylated regions and, to a lesser 
extent, in activated Treg-demethylated regions. These 
insights suggest that autoimmune-linked SNPs exert a 
more profound influence on thymus-derived Treg devel-
opment and function than on aberrant activation of auto-
immune effector T cells.

Several pathways critical for Treg development, func-
tion, and lineage stability are perturbed in T1D, poten-
tially resulting in Treg dysfunction. Although studies 
employing Tregs derived from peripheral blood have pro-
vided evidence of altered Treg function in T1D patients 
[182, 183], the extent to which peripheral blood can 
accurately reflect Treg function at the tissue site remains 
ambiguous. Mouse models, particularly the NOD model, 
have provided invaluable insights into the mechanisms 
underlying the Treg suppression of islet autoimmunity. 
These investigations have illuminated the notion that cer-
tain deficiencies in Treg function are exacerbated at the 
tissue site, with Treg deficits not always conspicuous in 
in vitro assays [184, 185]. It is plausible that an amalga-
mation of chronic inflammatory mediators, anomalies in 
the IL-2 signaling pathway, and diminished TCR diver-
sity, among other factors, converge within the pancreatic 
tissue, collectively weakening Treg function [184–187]. 
An optimal therapeutic strategy tailored to Tregs should 
be meticulously devised to address this combination of 
defects by stabilizing FOXP3 [188, 189].

Tregs in autoimmune hepatitis
The incidence of autoimmune hepatitis (AIH) is simi-
lar. Due to the much smaller number of patients, the 
data were more uncertain. A pioneering genome-wide 
association study (GWAS) identified mainly genes of 

the HLA complex as risk factors, such as in T1D, but 
none were directly related to Tregs [190]. In relation to 
AIH, research has shown that Tregs may play a signifi-
cant role in this context. A couple of studies from Ver-
gani et  al. have observed that patients with AIH may 
have reduced Treg numbers in the peripheral blood 
compared to healthy individuals [191–193]. The reduc-
tion in Tregs may contribute to an uncontrolled immune 
response against endogenous liver cells, ultimately 
leading to inflammation and liver damage. In particu-
lar, in pediatric AIH, decreased Treg, characterized as 
 CD3+CD4+CD25+ numbers and impaired Treg func-
tion have been documented. Nonetheless, in a more 
recent study that included FOXP3 in Treg characteriza-
tion  (CD3+CD4+CD25highFOXP3+), the opposite was 
described as patients with AIH had increased Treg num-
bers in the blood [194]. This is consistent with the intra-
hepatic observation that the number of Tregs increases 
during active disease [195]. Notably, the same group 
also observed the opposite result in untreated pediat-
ric patients with AIH [196]. In addition, the more pro-
nounced effect of standard steroid therapy on decreasing 
Tregs over T effector cells was striking, leading to an 
increase in the apoptosis of Tregs [195, 197].

In mice, knockout of genes related to Treg develop-
ment or function, such as aire or pd-1, leads to fatal auto-
immunity in the liver and other organs, accompanied 
by decreased or absent numbers of Tregs [198–200]. In 
contrast, in animal models of AIH that resemble differ-
ent aspects of human disease, an intrahepatic increase in 
Tregs in active AIH has also been observed [201–204].

Tregs in colitis
The role of Tregs in colitis is closely linked to the bal-
ance between the inflammatory and regulatory immune 
responses in the gut. Studies have shown that Tregs play 
a key role in preventing excessive inflammatory processes 
in the gut. Patients with colitis, particularly Crohn’s dis-
ease (CD) and ulcerative colitis, have been observed to 
have deficiencies in the number and function of Tregs 
[205–208]. This, in turn, promotes an unbridled and 
chronic inflammatory response that can damage intesti-
nal tissue.

Previously conducted genome-wide association stud-
ies have identified over 100 separate genetic loci that 
contribute to either susceptibility or defense against the 
development of inflammatory bowel disease (IBD), with 
a considerable portion of these loci being shared between 
the two conditions [209, 210]. Administration of NOD2 
ligands, including peptides or muramyl dipeptides, has 
demonstrated the potential to alleviate colitis induced 
by 2,4,6-trinitrobenzenesulfonic acid (TNBS) or dextran 
sulfate sodium (DSS) in normal mice [211, 212]. In a 
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TNBS-induced colitis model, treatment with Lactobacil-
lus peptidoglycan increased the number of Tregs in mes-
enteric lymph nodes and elevated IL-10 expression in the 
colonic mucosa, implying that NOD2 activity within the 
intestinal mucosa fosters a milieu conducive to immune 
tolerance. Furthermore, receptors associated with T cell 
and Treg migration, such as CD62L, C–C chemokine 
receptor (CCR)4, CCR5, CCR7, CCR9, αEβ7 integrin, 
and α4β7 integrin, also contribute to the pathogenesis of 
IBD [213–219]. The presence of these receptors on Treg 
cells plays a pivotal role in maintaining intestinal immu-
nological equilibrium, and their compromised expression 
has been linked to the development of IBD, owing to the 
impaired migration of Treg cells into the intestinal tract. 
For example, the absence of CCR7 impedes Treg cell 
functionality in an experimental colitis model [214].

Tregs as therapeutic agent or target
Among genetic and multifactorial autoimmune diseases, 
IBD is the most promising disease for polyclonal Treg 
transfer therapies. It has been shown, that Tr1 cells inhibit 
the proliferation of antigen-specific T cells through an IL-
10-dependent mechanism and exhibit protective effects 
in the adoptive transfer model of colitis involving naïve 
T cells, as in SCID patients with colitis [220]. Although 
both FOXP3 + Treg cells and Tr1 cells generate IL-10, 
Tr1 cells appear to play a crucial role in upholding tol-
erance towards commensal bacteria. Nonetheless, Batt-
aglia et  al. demonstrated the necessity of FOXP3 + Treg 
cells next to Tr1 cells to persist for the initial induction 
of tolerance in autoinflammatory diseases [221–223]. We 
have highlighted the importance of Tregs to home to the 
gut and expand into the lamina propria to regain immu-
nological tolerance [224]. As observed in SCID patients, 
the transfer of polyspecific Tregs is sufficient to treat 
autoimmune diseases that lack functional Tregs, such as 
SCID or APS-1 patients. Later, this was shown in other 
studies in the corresponding aire-deficient mouse model 
[199, 225–228]. To ensure the safety and efficacy of poly- 
or ovalbumin-specific autologous Tregs in the treatment 
of CD, many clinical trials have been conducted, includ-
ing NCT03185000 (TRIBUTE) [229, 230], Eudract no. 
2006–004712-44 [231], NCT02327221, NCT05566977, 
NCT03011021, NCT02932826, and NCT02691247. In 
addition, also antigen-specific Tregs bearing a chimeric 
antigen receptor (CAR) against model antigens were 
very successful in controlling colitis in animal models 
[232–235].

In T1D, the situation is very different, as polyspe-
cific Tregs show no positive effects in mouse models or 
patients. It has been shown that antigen-specific Tregs 
are required to control diabetes and prevent its induc-
tion. Considering that Treg insufficiency potentially 

fuels T1D and autoimmune diabetes, bolstering the Treg 
count in circulation could serve as a strategy to counter 
this inadequacy. Notably, recurring adoptive Treg trans-
fers into neonatal NOD mice have demonstrated the 
ability to postpone the onset of autoimmune diabetes, 
implying that Treg number or functionality might wane 
in NOD mice over time, necessitating supplementation 
[236]. Many T1D studies use BDC-2.5 mice, which are 
genetically modified NOD mice, carrying a transgenic 
TCR that recognizes a pancreatic antigen in NOD mice. 
These T cells destroy the insulin-producing cells in the 
pancreas. Therefore, another convincing strategy involves 
the adoptive transfer of a small quantity of DC-expanded 
BDC2.5 TCR-tg Tregs into pre-diabetic NOD mice. The 
transfer successfully prevented diabetes development and 
even salvaged mice with manifest diabetes [237]. When 
pre-diabetic NOD splenocytes or BDC2.5 TCR-tg Teff 
cells are transplanted into immunodeficient NOD mice, 
autoimmune diabetes typically emerges approximately 
14 d post-transfer. Interestingly, co-transplantation with 
over a million polyclonal Tregs or a few thousand BDC2.5 
TCR-tg Tregs can prevent the disease [238]. While a min-
imal number of antigen-specific Tregs have the capacity 
to reverse autoimmune diabetes, adopting ten-fold more 
polyclonal Tregs was not as effective in the therapeutic 
treatment of NOD mice, underscoring the critical signifi-
cance of specificity for β-cell antigens in optimizing Treg 
functionality [239–243].

Clinically, in vitro-expanded polyclonal Tregs are being 
evaluated as a promising avenue that diverges from phar-
macologically based treatments. Early phase clinical tri-
als encompassing both pediatric and adult participants 
with autologous, polyspecific Tregs have been con-
ducted, reflecting no immediate safety concerns, such as 
ISRCTN06128462, NCT01210664, NCT02932826, and 
NCT02772679 [244–247]. Notably, in children, potential 
efficacy has been assessed based on C-peptide levels at 
4–5  weeks post-treatment. However, while initial eleva-
tions in C-peptide levels were evident at the one- and 
two-year follow-ups, they gradually diminished over 
time. Intriguingly, nearly 25% of transferred Tregs, char-
acterized by a naïve/memory-like profile, persisted in 
patients at the one-year follow-up based on deuterium 
incorporation. A parallel trial conducted in Poland has 
yielded encouraging outcomes. In a cohort of 12 chil-
dren with T1D, a one-year follow-up revealed augmented 
C-peptide levels and reduced insulin usage in 8 of 12 
patients, resulting in complete insulin independence in 
2 of the 12 patients [244–247]. Whether these encourag-
ing observations endure and can be replicated in phase 2 
clinical trials remains to be ascertained.

The potential for a more robust success may rely on 
combination therapy. Potential synergies with Tregs have 
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been explored to optimize their therapeutic response in 
different autoimmune diseases. One effective strategy 
could involve bolstering the Treg population through 
the infusion of ex  vivo expanded Tregs, while concur-
rently reducing the Teff population using agents such as 
anti-CD3 monoclonal antibody (NCT00129259) [248] or 
LFA3-Immunglobulin (Ig) (NCT00965458) [249, 250], 
which have shown promise in initial trials for new-onset 
T1D, followed by more than 30 other trials with similar 
results.

Another avenue to consider is the coupling of Treg cell 
infusion with interleukin-2 (IL-2). In  vivo, IL-2 at low 
doses plays a pivotal role in the growth and survival of 
Tregs [251, 252], and constitute a critical component of 
Treg expansion protocols. Either Tregs might be directly 
equipped with IL-2 signals [253] or employing low-dose 
IL-2 has been effective in enhancing endogenous Tregs, 
leading to diabetes prevention and reversal in the NOD 
mouse model [184, 254]. Preliminary clinical investiga-
tions involving low-dose IL-2 have demonstrated selective 
increases in Tregs, yielding positive clinical outcomes in 
many (auto-)inflammatory conditions [255–259]. While a 
clinical trial combining IL-2 with rapamycin showed tran-
sient deterioration in beta cell function, potentially due to 
the relatively higher IL-2 dose or the influence of rapamy-
cin, which led to significant increases in natural killer cells 
and eosinophils, early studies on lower IL-2 doses in T1D 
have shown no acute degradation in beta cell function 
[260, 261]. Several ongoing studies are aimed at evaluat-
ing the safety and efficacy of this approach. In an upcom-
ing phase I trial involving autologous ex  vivo expanded 
Tregs followed by low-dose IL-2, we will assess whether 
low-dose IL-2 enhances in vivo survival and functionality 
of infused Tregs.

Tregs administered in the initial clinical trials on T1D 
did not exhibit TCRs or CARs that specifically targeted 
diabetes antigens. There are several possible explanations 
for the selection of polyclonal Tregs for such an admin-
istration. The safety aspect was the most important, as 
all studies validated the safety of polyclonal cells, which 
is a primary consideration in devising a clinical research 
protocol. Thus, the effectiveness of polyspecific Tregs has 
been demonstrated in animal models, and data from ani-
mal studies involving exogenous IL-2, which augments 
Treg numbers, suggest the efficacy of polyclonal cells. 
Unlike other cellular processes, Treg-mediated suppres-
sion lacks antigen specificity; hence, polyclonal T cells 
should be capable of regulating cells that possess specifi-
cities for diabetes antigens.

Preclinical investigations have proposed that antigen-
specific Tregs are more efficient in controlling autoim-
mune-mediated beta cell destruction than polyclonal 
Tregs [239–243]. Although target antigens for T1D have 

been identified, a significant challenge lies in isolating 
these less common cells from peripheral circulation and 
subsequently expanding them for clinical application 
[262]. Hence, it may be advantageous to generate anti-
gen-specific de novo Tregs. Engineered Tregs featuring 
CARs have exhibited success in pre-clinical T1D [263, 
264] and could potentially be viable for clinical deploy-
ment, albeit the specific antigen profile might need cus-
tomization for each individual patient.

Polyspecific Tregs were also used in a clinical tri-
als for AIH (NCT02704338) [265], Pemphigus Vulgaris 
NCT03239470, and Lupus Erythematosus NCT02428309 
proving safety. However, polyspecific Treg transfer was 
not very effective in AIH mouse models [201, 203]. 
Therefore, we and others have successfully used optimi-
zation protocols for Tregs to determine their therapeutic 
responses in different AIH models [266–268]. Nonethe-
less, data on combination therapy or antigen-specific 
CAR-Tregs are lacking.

Notably, the significance of antigen-specific CAR-Treg 
cells in preventing genetic resilience against organ-spe-
cific autoimmunity and inhibiting autoimmune tissue 
damage has been well documented in various disease 
models, including multiple sclerosis [269] and Alzhei-
mer’s disease [270].

Conclusion
Numeric and functional Treg deficiencies may be due to 
monogenetic, inborn errors of immunity or occur by a 
more complex multifactorial processes. While congenital 
global Treg deficiencies result in polytopic diseases and 
usually affect multiple organ systems, genetically unde-
fined autoimmune diseases, such as T1D or AIH, are 
characterized by the lack of particular antigen-specific 
Treg subsets but normal Tregs numbers. With the rapidly 
growing understanding of the genetic and functional Treg 
biology, new therapeutic approaches are currently being 
developed to overcome unmet medical needs in Treg 
diseases. The adoptive transfer of ex  vivo expanded or 
even genetically modified Treg products is in the focus of 
upcoming clinical trials. The success of these approaches 
will depend on both overcoming technical and regulatory 
hurdles and ensuring product safety and efficacy in larger 
patient cohorts. Undoubtedly, the possibility to tailor 
highly personalized Treg products that address patient or 
disease specific needs has certainly opened a new dimen-
sion of target specific treatment approaches.
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