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Abstract 

Background  As the most common chronic disease in childhood, asthma displays a major public health problem 
worldwide with the incidence of those affected rising. As there is currently no cure for allergic asthma, it is mandatory 
to get a better understanding of the underlying molecular mechanism.

Main body  By producing IgE antibodies upon allergen contact, B cells play a pivotal role in allergic asthma. Besides 
that, IL-10-secreting B cell subsets, namely regulatory B cells (Bregs), are reported in mice and humans to play a role 
in allergic asthma. In humans, several Breg subsets with distinct phenotypic and functional properties are identified 
among B cells at different maturational and differentiation stages that exert anti-inflammatory functions by express-
ing several suppressor molecules. Emerging research has focused on the role of Bregs in allergic asthma as well 
as their role for future diagnostic and preventive strategies.

Conclusion  Knowledge about the exact function of human Bregs in allergic asthma is still very limited. This review 
aims to summarize the current knowledge on Bregs. We discuss different human Breg subsets, several ways of Breg 
induction as well as the mechanisms through which they exert immunoregulatory functions, and their role in (child-
hood) allergic asthma.
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Background
Asthma is an inflammatory airway disease, affect-
ing both children and adults, being the most common 
chronic disease in childhood. It is characterized by 
airway hyperresponsiveness, acute and chronic bron-
choconstriction, airway edema, and mucus plugging 
[1]. There are two main forms of asthma: allergic and 
non-allergic asthma [2]. The World Health Organiza-
tion (WHO) estimated that 262 million people were 

affected by asthma in 2019 [3], and with current trends 
rising, it is expected to reach 400 million by 2025 [4]. To 
this end, understanding the underlying disease mecha-
nisms for further treatment is of great importance. Cur-
rently, there is no cure for asthma and therapy, which 
is focused on inhaled corticosteroids and bronchodila-
tors, suppresses symptoms rather than changing the 
natural history of the disease [5]. Additional asthma 
therapies, also approved for children, use biologicals 
such as Omalizumab or Dupilumab which target IgE 
or asthma-associated cytokines such as IL-4 and IL-13, 
respectively [6]. Nevertheless, depending on the sever-
ity, asthma results in a diminished quality of life and an 
important economic burden on public health care sys-
tems, thus representing a major public health problem 
worldwide with a high socio-economic impact [7].

The immune system has several mechanisms to defend 
itself against viral, bacterial, fungal, and protozoal infec-
tions. For this, the mammalian immune system consists 
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of the innate and the adaptive immune system. The lat-
ter is highly specific and relies on diverse antigen-specific 
receptors expressed on the surface of T- and B-lympho-
cytes [8]. For healthy immune regulation and to avoid 
excessive responses, the immune system needs to be 
tolerant against self and external innocuous antigens, 
referred to as immune tolerance. In healthy individu-
als, there is a subtle balance between anti-inflammatory 
(prevention of chronic inflammation and tissue damage) 
and pro-inflammatory (counter infections) responses [9]. 
Dysregulation can result in asthma, allergy, and autoim-
mune diseases [10].

The peripheral B cell compartment comprises a het-
erogeneous population of cells at different maturational 
stages along the lineage, each with distinctive functional 
properties [11]. They produce antibodies, cytokines, and 
act as antigen-presenting cells (APCs). In addition, B 
cells have the capability to regulate immune responses 
through regulatory B cells (Bregs), which are B cells with 
anti-inflammatory functions [12]. They exhibit their anti-
inflammatory role by producing mainly anti-inflamma-
tory cytokines, e.g., IL-10, transforming growth factor 
(TGF)-β, and IL-35, as well as by induction of other regu-
latory cells [13, 14]. In humans, Bregs are found among 
B-lymphocytes at different stages of maturation and dif-
ferentiation, ranging from early transitional B cells to 
highly differentiated plasmablasts [15, 16].

Knowledge about the impact of B cells and Bregs on 
asthma is still rather limited. IgE production upon aller-
gen contact is the main described role of B cells in aller-
gic asthma, which is mandatory for the initiation of the 
allergic cascade [17]. Habener et al. revealed that regula-
tory B cells control airway hyperresponsiveness and air-
way remodeling in a murine asthma model, suggesting a 
potential role for B cells in future diagnostic and preven-
tive strategies in asthma [18]. They also showed differ-
ences in human B cell populations between asthma and 
controls as well as between mild-moderate and severe 
asthma [19]. Moreover, Breg numbers contribute to the 
regulation of the immune system, which was confirmed 
by multiple human studies showing lower frequencies of 
some Breg subsets in allergic asthmatics [20–23]. This 
review aims to summarize the current knowledge about 
Bregs and their role in childhood allergic asthma to get 
new mechanistic insights into childhood asthma devel-
opment and therapeutic and preventive strategies.

Immune mechanisms underlying childhood allergic 
asthma
Allergic asthma is the predominant form of asthma in 
childhood, which has been characterized by sensitiza-
tion to specific allergens, high IgE levels, eosinophilia, a 
type 2 shifted immune response, and decreased innate 

immunity gene expression [24]. Both the innate and the 
adaptive immune system play a role in type 2 immune 
response and involve several immune cells such as 
T-helper (Th) 2 cells, group 2 innate lymphoid cells 
(ILCs), B cells, natural killer (NK) cells, NK T cells, baso-
phils, eosinophils, and mast cells, as well as their major 
cytokines [25].

Repetitive exposure of children to environmental 
allergens such as house dust mites (HDM) results in the 
development of allergen-specific memory T and B cell 
responses following expression of inflammatory media-
tors to recruit immune effector cells such as T and B 
cells [26, 27]. Upon allergen presentation by APCs to 
naïve CD4+ T cells, they get activated and release type 2 
cytokines such as IL-3 and IL-5, which drive the prolif-
eration and differentiation of basophils, eosinophils, and 
mast cells, which in turn contribute to asthmatic bron-
chial hyperresponsiveness. In addition, IL-4 and IL-13 
are released, which play a key role in IgE production 
of B cells. IgE in turn binds to high-affinity IgE surface 
receptors (FcεRI) on immune cells such as dendritic cells 
(DCs), basophils, and mast cells [28, 29]. Upon cross-
linking of the IgE-FcεRI complexes by the allergen, it 
activates the cells resulting in the release of inflamma-
tory mediators like histamine, leukotrienes, and the type 
2 cytokines IL-4, IL-5, and IL-13. Consequently, an influx 
of CD4+ T cells and eosinophils into the airways main-
tains type 2 inflammation. To this end, higher levels of 
lymphocytes, eosinophils, basophils, and mast cells are 
found in the airways of allergic asthmatics [28, 30]. More-
over, higher levels of airway epithelial desquamation, 
goblet cell hyperplasia, and thicker basement membranes 
are characteristics of asthmatics [29]. Since sensitization 
to allergens plays a key role in the development of allergic 
asthma [31], targeting of allergen sensitization seems to 
be promising in allergic asthma therapy [32].

B cells
As part of the adaptive immune system, B cells play a piv-
otal role in the protection against pathogens. Moreover, 
they play important roles in several diseases such as auto-
immune disorders [33, 34], cancer [35], allergy [36], and 
asthma [37, 38].

The peripheral B cell compartment consists of several 
cells at different maturational stages with different func-
tions [11]. In humans, B cells develop in the bone marrow 
from hematopoietic precursors derived from the fetal 
liver [39]. Early B cell development includes (early and 
late) pro-B, pre-B, and immature B cells in which specific 
surface markers are expressed and are characterized by 
rearrangements of the immunoglobulin (Ig) heavy and 
light gene segments to generate diverse antigen recep-
tors [40]. Immature B cells then exist in the bone marrow 



Page 3 of 9Kliem and Schaub ﻿Molecular and Cellular Pediatrics            (2024) 11:1 	

for several days until they enter the circulation as tran-
sitional B cells [41]. Depending on their surface mark-
ers and function, transitional B cells can be subdivided 
into T1, T2, and T3 B cells [42]. Depending on signals 
received through the B cell receptor (BCR) and other 
receptors, transitional B cells further differentiate into 
either follicular (FO) or marginal zone (MZ) B cells, now 
considered mature or naïve B cells [39, 43]. After specific 
antigen-recognition via BCR, selected B cells become 
either antibody-producing plasmablasts or plasma cells, 
or memory B cells [39]. Memory B cells are B cells, which 
circulate through the body [44]. Upon binding of the spe-
cific antigen, that originally activated the parent B cell 
that led to the production of the memory B cell, to the 
BCR, a strong and more rapid antibody response is initi-
ated by the memory B cell [45]. In addition to the genera-
tion of immunological memory through memory B cells 
[45], B cells also contribute to immune responses through 
cytokine production [46], and antigen presentation, as 
well as through antibody production, which is their main 
contribution to allergy [47]. These multifaceted roles of 
B cells were also shown in several studies using allergic 
mouse models of asthma [48–50].

Regulatory B cells (Bregs)
B cells can also regulate immune responses by other 
mechanism than antibody production, antigen presen-
tation, and cytokine production. In the 1970s, allergen 
sensitization studies described an immunosuppressive 
potential of B cells for the first time [51, 52]. At that time, 
the precise mechanisms of suppression were not identi-
fied, and for more than 20 years, the study of immuno-
suppressive B cells did not receive significant attention 
[9, 53]. However, during the past two decades, the knowl-
edge of regulatory B cell (Breg) phenotype and func-
tion increased [12]. In 2002, Mitzoguchi et al. described 
interleukin 10 (IL-10) producing B cells with regulatory 

functions that are characterized by CD1d upregulation 
in murine models of intestinal inflammation [54]. Other 
studies in murine models also showed an essential role of 
IL-10-producing B cells in controlling autoimmunity [55] 
and the prevention of arthritis [56]. Regulatory B cells 
(Bregs) were not only described in mice but they were 
also identified in humans: In 1998, Akdis et al. described 
IL-10-producing B cells in humans in the context of high-
allergen exposure models and allergen immunotherapy 
(AIT). In AIT, high doses of the allergen are adminis-
tered, which significantly changed IL-10 production 
after 7 days of bee venom (BV)-AIT in epitope-specific 
T cells, but not in B cells [57]. In 2007, Goetz et al. and 
Dass et al. demonstrated that therapy with Rituximab, an 
anti-CD20-antibody that depletes B cells, leads to severe 
exacerbation of ulcerative colitis and new onset of psoria-
sis in humans. Furthermore, they showed an association 
with the suppression of local IL-10 production suggesting 
an important anti-inflammatory role of IL-10-producing 
B cells in humans [58, 59].

Human Breg subsets
Several murine and human disease models were used to 
study the phenotype of Bregs as well as the underlying 
molecular mechanisms of Breg-mediated immune sup-
pression. This resulted in the identification of different 
Breg subsets in both mice and humans with distinct phe-
notypic and functional properties [9]. Until now, there is 
no clear consensus on the classification and definition of 
Bregs. Here, we discuss the major Breg subsets that were 
identified in humans (Table 1).

Human Bregs are found among B-lymphocytes at dif-
ferent stages of maturation and differentiation: Human 
CD27+CD24hi B10 cells produce IL-10 and thereby reg-
ulate cytokine production by monocytes after in  vitro 
stimulation with lipopolysaccharide (LPS) and CpG, 
indicating a functional link between Bregs and the innate 

Table 1  Different subsets and functions of human Bregs

Name Phenotype Functions

B10 cells CD27+CD24hi Regulate cytokine production by monocytes [60]

Immature transitional B cells CD19+CD24hiCD38hi Suppress TH1 and TH17 cell differentiation [15, 61]
Induce conversion of Tregs [61]
Regulate T cell immunity in CHB [62]

BR1 cells CD19+CD25+CD71+CD73− Suppress CD4+ T cell proliferation
Production of IgG4 antibodies [63]

Plasmablasts CD19+CD27intCD38+ Inhibit DC functions to generate autoreactive T cells [16]

Plasma cells IgA+PD-L1+IL-10+ Suppress anti-tumour immunity [64]

GrB+ B cells CD19+CD38+CD1d+IgM+CD147+ Suppress T cell proliferation by degradation of TCR [65]

CD9+ B cells CD19+CD9+ Induction of T cell apoptosis [66]

CD5+CD1d+ B cells CD19+CD5+CD1dhi Suppress TH17 response [67] and IL-22 production [68]
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immune system. The mean frequencies of these cells 
are significantly increased in patients with autoimmune 
diseases [60]. Human CD19+CD24hiCD38hi immature 
transitional B cells also have regulatory functions. After 
stimulation with CD40, these cells produce IL-10 thereby 
suppressing the differentiation of naïve T cells into TH1 
and TH17 cells while inducing the conversion into Tregs 
[15, 61]. Moreover, this Breg subset was shown to regu-
late T cell immunity in chronic HBV (CHB) infection 
[62]. Human CD19+CD25+CD71+CD73− BR1 cells are 
characterized by high expression of IL-10 and suppres-
sion of antigen-specific CD4+ T cell proliferation. Also, 
anti-inflammatory IgG4 antibody production was shown 
by these BR1 cells [63]. Lindner et al. described IL-21-in-
duced granzyme B-expressing B cells (GrB+ B cells) that 
are found in the microenvironment of solid tumors next 
to IL-21-providing T cells. They are characterized by a 
CD19+CD38+CD1d+IgM+CD147+ expression signature 
and express regulatory molecules such as GrB, IL-10, 
CD25, and indolamine-2,3-dioxygenase (IDO). It was 
shown that they suppress T cell proliferation through 
GrB-dependent T cell receptor (TCR) degradation [65]. 
Another human Breg subset was described in 2017 by 
Brosseau et al. showing that CD9+ B cells induce effector 
T cell apoptosis in both mice and humans by IL-10 secre-
tion. Moreover, they showed that these CD9+ B cells with 
regulatory properties are reduced in patients with severe 
asthma [66]. Human CD19+CD27intCD38+ plasmablasts 
produce IL-10 and secrete IgM. Interestingly, Matsu-
moto et  al. showed that human CD19+CD27intCD38+ 
plasmablasts derived from naïve and especially immature 
B cells, but not human CD19+CD27hiCD38+ plasma-
blasts derived from memory B cells, are the major IL-
10-producing B cells [16]. For human IgA+PD-L1+IL-10+ 
plasma cells, suppression of anti-tumor immunity was 
described [64]. Patients with tuberculosis were shown to 
have an increased number of CD5+Cd1d+ B cells with a 
stronger suppressive activity by inhibiting Th17 cell acti-
vation and IL-22 production [67, 68].

Due to this heterogeneity of Breg subsets, it was not 
possible until now to identify a Breg-specific transcrip-
tion factor [9]. Since this is an emerging field of research, 
many questions still need to be answered with regard to 
plasticity, ontogeny, and the Breg-mediated suppression 
mechanism.

Several ways of Breg induction
The heterogeneity of Breg subsets leads to the assump-
tion that there are either various distinct Breg lineages or 
that IL-10 can be induced by external stimuli at different 
stages of B cell development [9]. The precise mechanisms 
and required signals for Breg differentiation still need 
to be elucidated. However, several murine and human 

studies revealed that B cells of different maturational and 
differentiation stages are able to differentiate into Bregs 
upon antigen recognition and/or several kinds of stimuli 
[69–71]. CpG stimulation results in the generation of 
human CD19+CD27intCD38+ plasmablasts. Additionally 
treating B cells with IL-2, IL-6, and especially with the 
type I interferon IFN-α results in the generation of IL-10 
secreting human CD19+CD27intCD38+ plasmablasts 
[16]. IFN-α was described to induce CD38+ expression 
on human naïve B cells [72] and promote differentiation 
into plasma cells [73]. In this regard, it is likely that IFN 
receptor signaling is required for IL-10-producing human 
plasmablasts [16]. Indeed, treatment with IFN-β, which is 
another type I IFN, increases IL-10 expression of human 
B cells after BCR and CD40 ligation [74]. Another study 
in mice revealed that stimulation with IL-1β, IL-6, and 
anti-CD40 in combination promotes the differentiation 
into IL-10-producing Bregs. Interestingly, B cell stimu-
lation with TNF-α or IL-17 with or without anti-CD40 
has no effect on IL-10 production [70]. It was also dem-
onstrated that the TLR-MyD88-STAT3 pathway not only 
leads to antibody production of human B cells, but also 
regulates IL-10 production of human B cells by TLR7/8, 
which is enhanced by IFN-α [75]. The BATF/IRF-4/IRF-
8-axis was also shown to play a role in IL-10 and IL-35 
expression of murine regulatory B cells [76]. Matsumoto 
et al. also showed that IRF4 is required for the differen-
tiation into IL-10-expressing murine plasmablasts, both 
in vitro and in vivo [16]. Moreover, IL-21 was described 
to induce IL-10 expression of murine B10 cells [71] and 
human GrB+ Bregs [65]. Also, in  vitro stimulation of 
murine B cells with other molecules such as LPS, phorbol 
myristate acetate (PMA), and ionomycin generates IL-
10-expressing B cells [77–79]. Menon et al. revealed that 
also plasmacytoid dendritic cells (pDCs) can drive the 
differentiation of human CD19+CD24hiCD38hi Bregs and 
plasmablasts that express IL-10, IL-6, and TNF-α [69].

As another mechanism for Breg induction, overexpres-
sion of IL-10 in primary human B cells was shown to 
upregulate suppressor of cytokine signaling 3 (SOCS3), 
glycoprotein A repetitions predominant (GARP), IL-2 
receptor α chain (CD25), and programmed cell death 
ligand 1 (PD-L1). Moreover, IL-10 overexpressing human 
B cells secrete less pro-inflammatory cytokines such as 
TNF-α or IL-8, whereas production of anti-inflamma-
tory IL-1 receptor antagonists (IL-1RN) and vascular 
endothelial growth factor (VEGF) is increased [80]. In 
addition, the aryl hydrocarbon receptor (AhR) was shown 
to regulate the differentiation and function of IL-10-pro-
ducing murine Bregs [81] and A proliferation-inducing 
ligand (APRIL) drives the differentiation of naïve human 
B cells to IL-10-producing Bregs [82]. Human type 3 
innate lymphoid cells (ILC3s) were also shown to play a 
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role in the induction of human IL-10-producing imma-
ture transitional Bregs [83], whereas IL-35 was described 
to induce IL-35-producing human Bregs (IL-35+ Bregs) 
through activation of STAT1/STAT3 [84].

Breg suppressor molecules
Regulatory B cells mainly act by secreting immune-mod-
ulatory cytokines. Although research mainly focused 
on the role of IL-10 as the hallmark cytokine of Bregs 
[54–56, 63, 85], three main cytokines were identified to 
be expressed by Bregs as suppressor molecules: IL-10, 
TGF-β [86], and IL-35 [87, 88] (Fig. 1). The anti-inflam-
matory cytokine IL-10 is involved in the maintenance of 
homeostasis by dampening inflammatory responses and 
can be produced by many cell types such as monocytes, T 
cells, DCs, NK cells, macrophages, mast cells, and B cells. 
It induces immune tolerance in patients with chronic 
inflammatory diseases such as allergy, autoimmunity, 
organ transplantation, and tumor tolerance and has direct 
and indirect suppressive effects on cytokine production 
and proliferation of effector T cells [89]. Moreover, IL-10 
has an effect on B cells, including B cell survival, class-
switch recombination, and plasma cell differentiation 
[25, 89]. IL-10 is also thought to have a positive effect on 

asthma pathophysiology by suppressing the IgE-medi-
ated allergic cascade and decreasing airway inflamma-
tion [37]. Production of IL-10 was shown to be negatively 
regulated by B cell lymphoma-3 (Bcl-3) [90, 91], which is 
an atypical member of the inhibitor of NF-κB (IκB) pro-
tein family and regulates NF-κB-mediated gene expres-
sion, thereby regulating TLR signaling [92, 93]. TGF-β is 
an anti-inflammatory cytokine that has an important role 
in immune regulation, wound healing, and tissue remod-
eling and is involved in the conversion of naïve CD4+ T 
cells into functional regulatory T cells (Tregs) [25, 89]. 
IL-35 is primarily produced by Tregs and induces Treg 
proliferation while suppressing TH17 and TH1 responses 
[25, 84].

In addition to the expression of these anti-inflam-
matory cytokines, other anti-inflammatory molecules 
such as PD-L1 are associated with suppressive effects 
of Bregs. PD-L1, also known as CD274, is a transmem-
brane protein that regulates induced Treg cell function, 
development, and maintenance [94]. Bregs expressing 
PD-L1, described as PD-L1hi B cells, regulate cell expan-
sion and differentiation of follicular helper T cells (TFH), 
thereby suppressing autoimmune disease [95]. Also other 
surface-bound molecules like the Fas ligand (FasL) [96], 

Fig. 1  Breg suppressor molecules and their effect on other immune cells. Bregs mainly secrete the anti-inflammatory cytokines IL-10, IL-35, 
and TGF-β that in turn have a suppressive function on TH1 and TH17 cells. In addition, the conversion of CD4+ T cells into Tregs is induced. The 
transmembrane protein PD-L1 regulates cell expansion and differentiation of TFH cells. Also, other surface-bound molecules such as MHC-II, CD19, 
CD73, CD39, FasL, and TIM1 as well as AhR and GrB are described to play a role in Breg-mediated immunosuppressive effects. IL, interleukin; TGF-β, 
transforming growth factor β; TH, T helper cell; Treg, regulatory T cell; PD-L1, programmed cell death ligand 1; TFH, follicular helper T cells, MHC-II, 
major histocompatibility complex II; FasL, Fas ligand; TIM1, T cell immunoglobulin and mucin domain 1; AhR, aryl hydrocarbon receptor; GrB, 
granzyme B
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CD39 [97], CD73 [97], CD19 [78], major histocompat-
ibility complex II (MHC-II) [71], T cell immunoglobu-
lin, and mucin domain 1 (TIM1) [98] as well as GrB [65], 
AhR [99], and intracellular signaling molecules such as 
STAT3 and MyD88 [100] are described to play a role in 
Breg-mediated immunosuppressive effects. This shows 
that there is a huge variety of suppressor molecules that 
are expressed by Bregs to fulfill their immunosuppressive 
function (Fig. 1).

Role of Bregs in (childhood) allergic asthma
Recent research has concentrated on the role of Bregs in 
allergic asthma [26]. As mentioned above, Bregs express 
the anti-inflammatory cytokine IL-10, which is thought 
to have a positive effect on asthma pathophysiology 
by suppressing the IgE-mediated allergic cascade and 
decreasing airway inflammation [37]. Parasite infection 
in allergic mice models for asthma reveals protection 
from lung inflammation and airway hyperresponsive-
ness through IL-10-producing Bregs [37, 85]. Moreover, 
in human studies a higher number of allergen-specific, 
IL-10-producing Bregs is found upon allergen immuno-
therapies for cow milk and bee venom, indicating that 
higher Breg numbers are characteristic for induced toler-
ance to allergens [63, 101]. Braza et al. showed that upon 
allergen exposure the number of IL-10-producing Bregs 
is decreased in the lungs of asthmatic mice, indicating 
that the homeostasis of Bregs is altered by asthma [102]. 
Recently, Qian et al. showed that asthmatic patients have 
higher levels of IL-10 but lower levels of Bcl-3, suggesting 
that they have an important role in asthma pathogenesis. 
They also revealed that mice lacking Bcl-3 have increased 
eosinophilic airway inflammation, augmented airway 
goblet cell hyperplasia, elevated airway hyperresponsive-
ness, and increased levels of epithelial chemokines in the 
lungs after stimulation with HDM compared to control 
mice. These data demonstrate that Bcl-3 limits the IL-10 
expression during allergic sensitization, thereby pre-
venting lung inflammation and asthma pathogenesis in 
HDM-induced mice [103]. Since it was already shown 
that Bcl-3 is a negative regulator for IL-10 [91], these 
results indicate that Bcl-3 is a critical inhibitor of IL-10 in 
allergic asthma and targeting the Bcl-3/IL-10 axis may be 
a promising approach for allergic asthma therapy [103].

In adults, patients with allergic asthma show a lower 
percentage and absolute number of CD19+CD24hiCD27+ 
circulating Bregs [20, 21]. Also, these Bregs express less 
IL-10 upon LPS [104], but not CpG [105] stimulation. 
Moreover, frequencies of CD5+ and Cd1d+CD5+ Bregs 
are decreased in adult allergic asthmatics [22]. Recently, 
Sheehan et al. revealed that pediatric patients with aller-
gic asthma also have significantly lower levels of circulat-
ing IL-10 expressing CD24+CD38+ Bregs, compared to 

the healthy control group. This could indicate that the 
lower Breg levels are associated with suboptimal control 
of allergic inflammation leading to asthma development 
or excess morbidity from asthma. To this end, it seems 
that Bregs are important for both children and adults 
with allergic asthma and that the appropriate num-
ber and function of Bregs may be mandatory to control 
asthma by releasing suppressive signals to decrease TH2 
inflammation [23].

Conclusion
During the past two decades, several Breg subsets were 
described in mice and humans, each with distinct pheno-
typical and functional characteristics. However, in contrast 
to regulatory T cells, which can be clearly defined by the 
expression of the transcription factor Foxp3, the identifica-
tion of specific markers or transcription factors that clearly 
define Bregs is still missing. In addition, the precise mecha-
nism and required signals for Breg differentiation are not 
completely understood. The way by which Bregs mainly 
exert their immunosuppressive function is through anti-
inflammatory cytokines such as IL-10, TGF-β, and IL-35. 
Other anti-inflammatory molecules such as PD-L1, FasL, 
or intracellular signaling molecules like STAT3 and MyD88 
are also associated with Breg function; however, this var-
ies between different human Breg subsets. Several stud-
ies showed that IL-10 expression has a positive effect on 
asthma pathophysiology and that higher Breg numbers are 
characteristic of allergen tolerance. Moreover, it has been 
shown that asthma alters the homeostasis of Bregs: in adult 
as well as pediatric patients with allergic asthma, a lower 
percentage and absolute number of several IL-10 expressing 
Breg subsets are found. This suggests that lower Breg levels 
are associated with suboptimal control of allergic inflamma-
tion, which in turn may lead to the development of asthma. 
Since this is an emerging field of research, many questions 
still need to be answered with regard to plasticity, ontogeny, 
and Breg-mediated suppression mechanism as well as their 
exact role especially in childhood allergic asthma.
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FO	� Follicular
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GARP	� Glycoprotein A repetitions predominant
GrB	� Granzyme B
HDM	� House dust mite
IDO	� Indolamine-2,3-dioxygenase
IFN	� Interferon
Ig	� Immunoglobulin
IgE	� Immunoglobulin E
IκB	� Inhibitor of NF-κB
IL	� Interleukin
IL-1RN	� IL-1 receptor antagonist
ILC	� Innate lymphoid cell
ILC3	� Type 3 innate lymphoid cell
IRF	� Immunoregulatory factor
LPS	� Lipopolysaccharide
MHC-II	� Major histocompatibility complex II
MyD88	� Myeloid differentiation primary response 88
MZ	� Marginal zone
NF-κB	� Nuclear factor kappa-light-chain-enhancer of activated B cells
NK	� Natural killer
PD-L1	� Programmed cell death ligand 1
pDCs	� Plasmacytoid dendritic cells
PMA	� Phorbol myristate acetate
SOCS3	� Suppressor of cytokine signaling 3
STAT​	� Signal transducer and activator of transcription
TCR​	� T cell receptor
TFH	� Follicular helper T cells
TGF-β	� Transforming growth factor β
TH	� T helper cell
TIM1	� T cell immunoglobulin and mucin domain 1
TLR	� Toll-like receptor
TNF	� Tumor necrosis factor
Treg	� Regulatory T cell
VEGF	� Vascular endothelial growth factor
WHO	� World Health Organization
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