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Abstract 

Background Increasing prevalence of morbid obesity accompanied by comorbidities like type 2 diabetes mel-
litus (T2DM) led to a demand for improving therapeutic strategies and pharmacological intervention options. Apart 
from genetics, inflammation processes have been hypothesized to be of importance for the development of obesity 
and related aspects like insulin resistance.

Main text Within this review, we provide an overview of the intricate interplay between chronic inflammation 
of the adipose tissue and the hypothalamus and the development of obesity. Further understanding of this relation-
ship might improve the understanding of the underlying mechanism and may be of relevance for the establishment 
of new treatment strategies.
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Background
The overwhelming increase in obesity and its associated 
comorbidities worldwide necessitates an advancement 
of optimal therapeutic intervention. However, an under-
standing of the underlying mechanism is relevant in 
order to development new strategies to optimize patient 
management which includes the reduction of obesity-
related comorbidities. Special attention has been paid 
to elucidating the relationship between chronic inflam-
mation and obesity. In contrast to the transient, acute 
inflammation type, which is characterized by edema 
formation and leukocyte migration, chronic inflamma-
tion endures over a prolonged period and is marked by 

the presence of lymphocytes and macrophages, which 
are integral components of adipose tissue [1]. Chronic 
inflammation has been extensively studied as a compo-
nent of the metabolic syndrome due to the release of 
pro-inflammatory adipokines, such as leptin, interleu-
kin-6 (IL-6), tumor necrosis factor-α (TNFα), and oth-
ers, by adipose tissue [2]. This chronic inflammatory 
state plays a pivotal role in the pathogenesis of various 
conditions including fatty liver disease, cardiovascu-
lar disease, insulin resistance in T2DM, asthma, neu-
rodegeneration, certain cancers, and predisposition to 
autoimmune diseases [3, 4]. The presence of pro-inflam-
matory cytokines and the recruitment of myeloid cells 
have been shown to directly correlate with metabolic 
dysfunction observed in obese patients [5–8]. Addition-
ally, obesity-related insulin resistance can impact the 
adaptive immune response [9, 10]. Impaired T cell func-
tion has been observed in mice with diet-induced obe-
sity, leading to poorer outcomes in viral infections such 
as influenza [11, 12]. The inflammasome, a macromo-
lecular sensor found in innate immune cells, represents a 
critical initiator of the inflammatory response. This mul-
timeric protein complex is activated by cellular nutrients 
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such as glucose or free fatty acids, exerting control over 
IL-1β production and Caspase-1 activation among oth-
ers [13, 14]. The concept of “immune metabolism” 
encompasses the intricate interplay between immu-
nological processes and metabolic abnormalities. This 
review aims to provide a detailed summary of the inter-
connections between inflammation in adipose tissue, the 
hypothalamus, and the leptin-melanocortin signaling 
pathway and its pharmacological relevance.

Main text
Inflammation and leptin‑melanocortin signaling pathway
The leptin-melanocortin signaling pathway plays a cru-
cial role in central appetite regulation. The hormone 
leptin (LEP), produced by and according to adipose tis-
sue mass, binds to the Leptin receptor (LEPR) in the 
hypothalamus. This binding stimulates the production of 
pro-opiomelanocortin (POMC), which is subsequently 
processed into α-melanocyte-stimulating hormone 
(MSH) and β-MSH, among other peptides. α- and 
β-MSH bind to the Melanocortin-4 receptor (MC4R), 
thereby activating the feeling of satiety, which leads to a 
reduction in food intake and a modulated energy expend-
iture [15]. Genetic alterations within this signaling path-
way, such as in the LEP and LEPR gene, lead to severe 
early-onset adiposity due to hyperphagia [16].

In addition to its role in appetite regulation, leptin also 
triggers proliferative signals in hematopoiesis and lym-
phopoiesis. It can activate neutrophils, natural killer cells, 
monocytes, dendritic cells, and macrophages [17–21]. 
Additionally, there is an enhanced expression of leptin 
mRNA and cytokines such as TNFα, IL-6, and IL-1β in 
response to lipopolysaccharide (LPS) stimulation, indicat-
ing its role as a mediator in inflammatory activity [22, 23]. 
In the absence of leptin, dendritic cells exhibit a T helper 
cell type 2 (Th2)-biased cytokine profile whereas exog-
enous administration of leptin drives the balance towards 
a Th1 profile [17, 18]. Th1 responses are present in auto-
immune processes, thus reduced levels of Leptin have a 
protective effect in autoimmune diseases [24–27]. Dur-
ing acute inflammatory reactions and sepsis, a marked 
increase in leptin levels is observed in the blood of so 
far healthy individuals. Leptin acts via binding to LEPR, 
a class 1 cytokine receptor of the superfamily [28–31], 
which is mainly expressed in the hypothalamus, but also 
in the kidney, lung, and choroid plexus [32].

Both Leptin-deficient ob/ob mice and Leptin recep-
tor-deficient db/db mice display impaired cell-mediated 
immunity and lymphoid atrophy, making them more 
susceptible to infections and injuries [33–37]. These 
animals also exhibit thymic atrophy, which affects the 
maturation process of thymocytes that require leptin as 
a survival factor [33]. Consequently, specific alterations 

in peripheral T cell populations can be observed in these 
animals. Short-term administration of leptin can restore 
thymic cellularity, reverse LPS-induced thymic atro-
phy, and support thymopoiesis [38, 39]. On the other 
hand, ob/ob mice appear to be partially protected against 
inflammation and tissue damage, such as in fulminant 
hepatitis [40]. They are also resistant to dextran sulfate 
sodium (DSS)-induced colitis [40] and autoimmune glo-
merulonephritis [41]. Lepr-deficient mice also display 
impaired lymphopoiesis with reduced numbers of B cells 
in the bone marrow and permanently reduced levels of B 
cells and CD4 + T cells in the blood [42]. Hence, a direct 
role in the proliferation and expansion of hematopoietic 
stem cells and lymphoid progenitor cells is postulated. 
Additionally, the development of natural killer (NK) cells 
is affected, with significantly reduced NK pool size [21].

Patients deficient in LEP and LEPR show reduced lym-
phocyte proliferation and cytokine production, making 
them more prone to infections. Particularly in individu-
als with Leptin deficiency, an increased incidence of 
infection-related deaths during childhood has been 
observed [27, 43]. However, the administration of Lep-
tin can restore these immunological abnormalities [26]. 
Additionally, low levels of Leptin can also play a crucial 
role in immunosuppression during periods of starvation 
and malnutrition [44]. On the other hand, in patients 
with active rheumatoid arthritis, an inverse correlation 
between disease activity/inflammation and blood leptin 
concentration has been observed [45].

Several decades ago, it was demonstrated that α-MSH 
can downregulate pro-inflammatory cytokines, includ-
ing IL-1, IL-6, TNFα, as well as immunomodulatory 
cytokines such as IL-2, IL-4, IL-13, and interferon-γ 
(INFγ) in  vitro [46]. Moreover, cell experiments have 
revealed that α-MSH influences the production of immu-
noglobulin E (IgE) and nitric oxide (NO) and inhibits 
IL-1β-induced production of IL-8, growth-regulated 
protein α (Groα), and nuclear factor “kappa-light-chain-
enhancer” of activated B cells (NFκB) [47, 48]. In mouse 
models, administration of α-MSH suppressed allergic air-
way inflammation and reduced levels of Il-4 and Il-13 in 
the bronchoalveolar lavage of allergic mice [49]. Similarly, 
in mice with DSS-induced colitis, α-MSH administra-
tion mitigated disease-induced weight loss and improved 
the overall outcome of the animals [50]. These effects 
are believed to be mediated through the melanocortin-1 
receptor (MC1R). MC1R, primarily known for its role 
in melanocyte pigmentation [51, 52], is also expressed 
in immune cells [53–55]. Concordantly, Mc1r-deficient 
mice exhibited significantly worse outcomes in DSS-
induced colitis, characterized by increased weight loss 
and more pronounced histological changes compared to 
wild-type mice [56]. Thus, it can be postulated that MC1R 
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serves as an important regulator of mucosal defense. 
Mutations in MC1R lead to an augmented inflammatory 
response and are associated with burn-induced systemic 
inflammatory response syndrome (SIRS) and infectious 
complications in patients [57, 58]. Furthermore, MC1R is 
implicated in the development of hypertrophic scarring 
[59]. Studies have shown that administration of an MC1R 
agonist (PL-8177) significantly reduced the inflammatory 
response in mice with experimentally-induced autoim-
mune uveitis [60] and experimentally-induced inflam-
matory bowel disease in rats [61]. The MC4R agonist 
setmelanotide (RM493), which is approved by the U.S. 
Food and Drug Administration (FDA) and the European 
Medicines Agency (EMA) for the treatment of mono-
genic obesity in LEPR- and POMC-deficient patients, 
also binds to MC1R, resulting in skin hyperpigmentation 
and hair darkening in patients [62–64]. In  vitro experi-
ments demonstrated that activation of MC4R by set-
melanotide in astrocytes exhibits anti-inflammatory and 
neuroprotective effects. Astrocytoma cells incubated 
with TNFα and IFNγ and subsequently treated with set-
melanotide exhibited reduced expression of chemokine 
C–C motif ligand 2 (CCL2) and C-X-C motif chemokine 
10 (CXCL10), while IL-6 and IL-11 mRNA levels were 
increased. These chemokines play an important role in 
the activation of leukocytes in the central nervous system 
(CNS) [65].

In addition to its role in regulating hunger 
and satiety, the individual components of the 

leptin-melanocortin signaling pathway also contrib-
ute to immunomodulatory responses. Leptin conveys 
pro-inflammatory signals via activation of the immune 
system while, antagonistically, α-MSH displays anti-
inflammatory effects for example in inflammatory 
bowel diseases (Fig. 1).

Inflammation and adipose tissue
Multiple hypotheses have been proposed to elucidate the 
mechanisms underlying chronic adipose tissue inflam-
mation in obesity (Fig.  2). The first hypothesis suggests 
that excessive nutrient intake leads to the accumula-
tion of misfolded or unfolded proteins in the endoplas-
mic reticulum, triggering the activation of the unfolded 
protein response pathway (UPR), which leads to an 
enhanced expression of pro-inflammatory cytokines 
[66–71]. The second hypothesis postulates that an over-
loading of adipocytes leads to a substantial infiltration of 
macrophages. This is accompanied by the differentiation 
and activation of cytotoxic T cells, which subsequently 
initiate inflammatory cascades [72–74]. Another theory 
focuses on the expansion of adipose tissue, which results 
in reduced perfusion, leading to hypoxia and subsequent 
activation of pro-inflammatory signaling pathways. This 
hypoxia-induced inflammation contributes to necrosis 
and infiltration of macrophages within the adipose tissue 
[75–78]. Moreover, overloaded adipocytes and mechani-
cal stress directly activate immune pathogen sensors, fur-
ther promoting chronic inflammation [79]. Additionally, 

Fig. 1 Components of the leptin-melanocortin signaling pathway contribute to immunological functions. Leptin is produced by the adipose 
tissue and binds centrally to the leptin-receptor. This activates the production and processing of POMC into α-MSH among others. Α-MSH binds 
to the MC4R, which initiates a feeling of satiety and leading to a reduction and food intake. The components of this pathway also contribute 
to inflammatory functions. Leptin acts via binding to the Leptin-receptor and increases hematopoiesis and lymphopoiesis. It activates neutrophils, 
NK, monocytes, dendritic cells, and macrophages and promotes a Th1-type production of pro-inflammatory cytokines. Α-MSH has been shown 
to downregulate pro-inflammatory cytokines such as IL-1, IL-6, and TNFα and immunomodulatory cytokines like IL-2, IL-4, IL-13, and INFγ. It 
also reduces the production of IgE and NO
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free fatty acids in the adipose tissue can promote inflam-
mation by indirectly binding to Toll-like receptors (TLR4 
and TLR2), leading to the activation of NFκB and Janus 
kinase 1 (JNK1) [80, 81]. This activation, in turn, stimu-
lates the synthesis and secretion of chemokines, such as 
monocyte chemoattractant protein-1 (MCP1), by adipo-
cytes and macrophages. These chemokines contribute 
to the infiltration of pro-inflammatory macrophages [82, 
83]. As a result, this local adipose tissue inflammation 
triggers systemic inflammation, which is closely associ-
ated with the development of obesity-related comorbidi-
ties. This also includes inflammatory vascular changes, 
which can finally lead to atherosclerotic cardiovascular 
diseases (CVD). In patients with CVD, plasma adiponec-
tin levels are decreased [84]. Adiponectin is proposed 
to be protective against CVD by repressing inflamma-
tory mediators such as vascular cell adhesion molecule 1 
(VCAM1), TNFα, and IL-6 and by stimulating endothe-
lial NO synthase [85–88]. Therefore, adipokines are sug-
gested to play an important role in CVD. Furthermore, 
it has been postulated that advanced glycation end prod-
ucts (AGEs) may play a contributory role in adipose tis-
sue inflammation. AGEs, comprising proteins and lipids 

subjected to glycation by various sugars, most notably 
glucose, exhibit their function by binding to cell sur-
faces or receptors and by catalyzing ROS formation and 
accumulation [89]. Notably, AGE levels are increased in 
patients with hyperglycemia, which can activate different 
signaling pathways, including NF-kB, which regulates the 
transcription of proteins, such as chemokines, growth 
factors, or cytokines [90].

Our adipose tissue depot harbors approximately 2–5 
million cells per gram, of which around 65% are leu-
kocytes. Consequently, adipose tissue functions as an 
autonomous immunological organ [5–8]. Within our 
visceral adipose tissue, a diverse array of immune cells 
exists, including macrophages, dendritic cells, granulo-
cytes, lymphocytes, T cells, and B cells [91]. Remarkably, 
up to 15 distinct subpopulations of leukocytes can be dis-
cerned [92]. In contrast, subcutaneous fat is prominent 
in lean subjects, and rather serves as a barrier against 
dermal infection and physical external stress as well as 
an important regulator of body temperature and is there-
fore much less immunologically active [93]. Neutrophils 
are the initial immune cells to infiltrate the visceral adi-
pose tissue in obesity, initiating inflammation within the 

Fig. 2 Activation of chronic inflammation in the adipose tissue. Several hypotheses suggest possible mechanisms for the activation of adipose 
tissue inflammation. Hypothesis (a) proposes that an increased nutrient intake leads to an accumulation of misfolded/unfolded proteins, which 
activates the UPR, activating inflammation. Hypothesis (b) postulates that overloading of adipocytes triggers infiltration of macrophages due 
to hypoxia, followed by activation of cytotoxic T cells, which subsequently initiate inflammatory cascades. Hypoxia results in necrosis, which 
further promotes macrophage infiltration (see c). Overloaded adipocytes and consequent mechanical stress can also directly activate immune 
pathogen sensors (d). Lastly, free fatty acids can promote inflammation via indirectly binding to TLRs, which activates JKN1. This in turn stimulates 
the secretion of chemokines, such as MCP1 (e). AGEs are also postulated to contribute to inflammation in the adipose tissue (f)
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adipose depot [94]. Macrophages constitute approxi-
mately 4% of the healthy visceral adipose tissue, which 
can escalate to 12% in the context of obesity [83]. Two 
distinguishable macrophage populations are present: 
M1 (type 1 macrophage), prevalent in obesity, and M2, 
predominantly found in lean adipose tissue [95] (Fig. 3). 
M1 macrophages exhibit an increased production of pro-
inflammatory cytokines, such as IL-6, TNFα, IL-12, and 
IL-23, alongside a reduced synthesis of the anti-inflam-
matory cytokine IL-10 [95]. M2 macrophages primarily 
engage in tissue repair processes and generate IL-10, con-
comitant with decreased IL-12 and IL-23 synthesis [96]. 
Studies with high-fat-diet (HFD)-induced obesity mouse 
models have demonstrated a significant increase in NK 
cells, responsible for the M1 polarization of macrophages 
through IFNγ production [97, 98]. B cells also exhibit 
heightened abundance within the adipose tissue of obese 
individuals [99]. Preventing the accumulation of adi-
pose tissue macrophages (ATMs) or pro-inflammatory 

macrophages holds the potential to shield obese mice 
from glucose intolerance and insulin resistance [100–
102]. Consistently, the reduction of B cells in obesity cul-
minates in enhanced insulin sensitivit [6]. Mice incapable 
of producing inflammasome molecules exhibit improved 
glucose tolerance and insulin sensitivity when sub-
jected to HFD compared to their wild-type counterparts 
[103–107]. Administering obese mice with a caspase-1 
inhibitor therapy can restore metabolic functions. Con-
sequently, these inhibitors present a therapeutic potential 
for inflammasome-targeted interventions [104].

Pharmaceuticals targeting immunological modula-
tors have been shown to improve insulin sensitivity in 
humans as well. For example, in patients afflicted with 
both rheumatoid arthritis and diabetes, IL-1R antagonist 
has demonstrated the capacity to enhance insulin sensi-
tivity [108]. Clinical trials have unveiled the potential of 
TNFα antagonists in inhibiting the development of type 
2 diabetes [109, 110]. These antagonists have exhibited 

Fig. 3 M1-type macrophages are prevalent in obese adipose tissue. In obese adipose tissue, pro-inflammatory M1-type macrophages are 
predominantly activated. They mainly produce cytokines and chemokines with inflammatory activity such as TNFα, IL-1α, IL-1β, and IL-6. 
Additionally, Th1 cells are mainly infiltrating the obese adipose tissue. In lean adipose tissue, the anti-inflammatory M2-type macrophage 
is dominantly represented. These macrophages mainly participate in tissue repair and regeneration and produce cytokines like IL-10 
and transforming growth factor β (TGFβ). Apart from M2 macrophages, also Th2 cells are localized in the lean adipose tissue
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improvements in glycemic control among obese patients 
with psoriasis, rheumatoid arthritis, and Crohn’s disease 
who do not have diabetes [111–118]. Additionally, Anak-
inra, a recombinant human IL-1R antagonist, has been 
found to ameliorate the secretory function of B cells and 
reduce glycemic levels [119]. Ongoing clinical trials are 
presently investigating the effects of neutralizing anti-
IL-1β antibodies, particularly in patients with type 2 dia-
betes [108, 120–122].

On the other hand, there is also therapeutic potential 
focusing on anti-inflammatory adipokines produced by 
the adipose tissue, such as adiponectin, to prevent the inci-
dence of co-morbidities like insulin resistance [123–127]. 
Adiponectin exerts beneficial effects on inflammation, ath-
erosclerosis [128], T2DM, and insulin resistance [129, 130]. 
It enhances local NO production [88], protects against 
endothelial dysfunction, and inhibits plaque formation and 
thrombosis. Consequently, it serves as a vasoprotective 
factor while mitigating oxidative stress [131, 132]. It also 
improves insulin sensitivity, impedes the uptake of non-
esterified fatty acids, reduces gluconeogenesis, and aug-
ments oxidative processes. Consistently, in cases of severe 
weight gain and obesity, adiponectin levels are notably 
diminished [133, 134].

Our microbiome also exerts a significant influence 
on the immune response and could serve as a pro-
spective therapeutic target in managing insulin resist-
ance and chronic inflammation associated with obesity 
[135]. A research group has demonstrated that patients 
who undergo Roux-en-Y gastric bypass surgery display 
diminished infiltration of macrophages in adipose tissue, 
resulting in reduced inflammation [136].

Inflammation within the adipose tissue has been a 
long-known regulator of the development of metabolic 
syndrome. In recent years, targeting this chronic state of 
inflammation has led to the development of new pharma-
cological strategies to protect against insulin resistance 
and diet-induced obesity (DIO), indicating that a more 
extensive understanding of underlying mechanisms can 
contribute to improved therapy strategies for patients 
with obesity and metabolic syndrome.

Inflammation and hypothalamus
Gut inflammation is a consequential outcome of an 
HFD and potentially contributes to the onset of obe-
sity [137, 138]. The intricate interplay between dietary 
components of HFD, the microbiome, and neuronal 
inflammation holds substantial importance [139]. HFD 
induces noteworthy alterations in the diversity of the 
microbiome and triggers oxidative stress within the 
hypothalamus [140]. As a consequence, the perme-
ability of the blood–brain barrier is enhanced due to 
a potential downregulation of tight junction proteins 

[141–143]. This enables the infiltration of peripheral 
macrophages into the hypothalamus [144, 145]. These 
infiltrating macrophages originate from adipose tissue 
and share similar surface markers with ATMs. Display-
ing a pro-inflammatory M1 phenotype may contrib-
ute to neuropathological conditions such as cerebral 
ischemia and dementia [146].

In male mice, an HFD leads to a rise in macrophage 
population from 1.3 to 2.9% of all hypothalamic cells. 
Concurrently, the proportion of macrophages in vis-
ceral adipose tissue also increases from 5.3% to as high 
as 22.8% in these animals. Furthermore, the propor-
tion of microglia cells in the hypothalamus of male 
mice increases from 31 to 52% following HFD [146]. 
Hypothalamic microglial cells are believed to have an 
orchestrating role in the inflammatory response as sen-
sors within the hypothalamus [147]. Simultaneously, an 
increase in the population of these cells has been asso-
ciated with neurodegeneration [148]. Microglial cells, 
known as the brain’s macrophages, play a crucial role 
in hypothalamic inflammation [149, 150]. The propor-
tion of microglial cells also influences the strength of 
the inflammatory response, impacts neuronal stress, and 
regulates satiety-signaling neurons [151]. This inflam-
matory response triggers reactive gliosis, characterized 
by increased infiltration of microglia and proliferation 
of astrocytes [139, 152]. Among the regulators of micro-
glial cell activation, uncoupling protein 2 (UCP2) plays a 
significant role. HFD induces mitochondrial changes in 
microglial cells through an increase in UCP2, leading to 
the production of reactive oxygen species (ROS) and acti-
vation of inflammation [153, 154]. It is therefore highly 
expressed in activated microglia cells [155]. Concord-
antly, genetic ablation of UCP2 in microglia cells of mice 
led to protection against DIO and made POMC-neurons 
more sensible towards glucose [156]. UCP2 can inhibit 
the activation of POMC neurons induced by glucose 
while activating NPY/AgRP neurons through ROS [157] 
thereby promoting orexigenic signaling. It is distributed 
throughout the organism including the spleen, kidney, 
immune system, and within the CNS [158–162] and 
genetic variants of UCP2 have been associated with obe-
sity and insulin resistance [163–165]. Interestingly, UCP2 
has a dual function of protecting against ROS and sup-
porting fatty acid oxidation [153, 154] and also presents 
anti-inflammatory effects by having a protective role in 
acute and chronic neurodegeneration and inflammatory 
brain diseases [166].

Hypothalamic inflammation has been connected to 
obesity in the past. Following HFD, pro-inflammatory 
proteins such as Tnfα, Il-6, and Jnk3 are upregulated in 
the hypothalamus in rats [167]. Prolonged exposure to 
HFD in rodents also leads to hypothalamic inflammation, 
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resulting in hypothalamic leptin resistance and sub-
sequent development of obesity due to reduced lep-
tin effectiveness [139, 152, 168]. This inflammation in 
the hypothalamus has also been observed in humans 
and correlates with elevated levels of serum inflamma-
tory proteins, including IL-6 and C-reactive protein 
(CRP) [139, 152]. Interestingly, obesity resistance has 
been associated with increased expression of IL-6 in the 
hypothalamus. It plays a role in neurogenesis within the 
hypothalamus. This process involves the expression of 
transcription factors Sox2 and Sox6, which are crucial 
for neurogenic transcriptional regulation [169–171]. Pro-
duced in response to exercise, primarily by muscle tissue, 
IL-6 has been found to mitigate memory loss in Alzhei-
mer’s disease models [172, 173]. Moreover, exercise-
induced IL-6 can reduce diet-induced inflammation and 
restore abnormal regulation of food intake [174, 175]. In 
mice fed HFD, administration of IL-6 protected against 
weight gain regardless of calorie intake [176].

Although discussed controversially as it is not known 
yet whether leptin resistance actually occurs in humans, 
its development within the CNS might be partially medi-
ated by the activation of pro-inflammatory suppressor 
of cytokine signaling 3 (SOCS3) (Fig.  4). The binding 
of leptin to its receptor triggers the activation of the 
janus-kinase-signal transducer and activators of tran-
scription-SOCS3 (JAK-STAT-SOCS3) signaling pathway 
[177–179]. Within this pathway, SOCS3 serves as a nega-
tive feedback regulator, exerting control over the effects 

of leptin and dampening the downstream activation of 
MC4R [179]. Accordingly, in  situations where there is 
heightened production of leptin due to increased adi-
pose tissue, there can also be an upregulation of SOCS3 
expression. This elevated SOCS3 expression can con-
tribute to the development of both leptin resistance and 
insulin resistance within the brain and peripheral tissues 
[179–181].

Inflammation and liver
In liver disease, there is a dysregulation of the tolero-
genic mechanism, leading to an excessive inflamma-
tory response [182]. In non-alcoholic steatohepatitis 
(NASH), there is a persistent occurrence of apopto-
sis in Kupffer cells, which are subsequently replaced 
by monocyte-derived recruited hepatic macrophages 
[183] (see Figs.  5 and 6). Additionally, there is an 
accumulation of collagen within the liver [184, 185]. 
Hepatocytes become steatotic, primarily attributed to 
enhanced de novo lipogenesis, and exhibit a ballooned 
morphology characteristic of NASH [186]. Further-
more, the abnormal accumulation of triglycerides in 
hepatocytes, along with oxidative stress and lipid per-
oxidation, collectively contribute to the pathogenesis 
of non-alcoholic fatty liver disease (NAFLD) [187–
189]. In obese individuals, adipose tissue inflamma-
tion results in the secretion of inflammatory cytokines 
that further promote hepatic inflammation [190]. 
Moreover, dysregulated hepatic lipid and cholesterol 

Fig. 4 Pro-inflammatory cytokine SOCS3 has been proposed to play an important role in the development of leptin and insulin resistance 
in the CNS and the periphery. SOCS3 is activated and produced by DIO, injection of TNFα, or due to lipid infusion in several different organs. It 
is also activated upon increased levels of insulin and leptin and acts as a negative regulator for both, i.e., by inhibiting phosphorylation and p85 
binding to insulin receptor substrate 1 (IRS-1), inhibiting insulin-stimulated glucose uptake or reducing the binding of leptin to the leptin-receptor 
in the hypothalamus, leading to orexigenic signaling. Chronic inflammation increases levels of IL-6, which in turn activates SOCS3 in the adipose 
tissue
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metabolism contributes to an increased production 
of ROS [190]. Additionally, alterations in the gut can 
lead to augmented infiltration of LPS, thereby induc-
ing hepatic inflammation, hepatocyte damage, and 
activation of hepatic stellate cells (HSCs), which pro-
duce extracellular matrix and therefore contribute to 
fibrotic changes within the liver tissue [191]. Leptin 
also plays a significant role in the activation of HSCs 
[192]. Stimulation by leptin results in enhanced expres-
sion of TGFβ in Kupffer cells and upregulation of 
hedgehog signaling pathways that sustain the activated 
phenotype of HSCs [193]. Additionally, LEPR-deficient 
rats exhibit a protective effect against the progres-
sion of liver fibrosis induced by carbon tetrachloride 
(CCl4) [194]. On the other hand, adiponectin sup-
presses HSC activation in NASH [195, 196]. Admin-
istration of recombinant adiponectin has been shown 
to ameliorate hepatic steatosis and inflammation in 
obese mice [197]. Dual agonist of adiponectin recep-
tors AdipoR1/AdipR2 improved NASH and fibrosis 
in rodents by reducing HSC activation [198]. Several 
potential treatment options have emerged to attenu-
ate the progression of liver fibrosis in NASH by target-
ing inflammatory pathways. Among these approaches 
is the inhibition of cytokine-mediated processes, such 
as the utilization of anti-interleukin-17 (anti-IL-17) 

biological therapy to impede HSC stimulation [199]. 
Additionally, promising effects have been observed in 
a phase 2 clinical trial of the CCR2/5 antagonist cenic-
riviroc [200], which suppresses monocyte recruitment 
to the liver and has demonstrated a reduction of liver 
fibrosis in rodents [201–205]. Furthermore, the neu-
tralization of TGFβ using fresolimumab (GC1008), a 
human anti-TGFβ1 monoclonal antibody, has shown 
successful suppression of liver fibrosis development 
in mouse models [206–209]. Hyperinsulinemia can 
directly stimulate the proliferation of HSCs and subse-
quently trigger the secretion of type 1 collagen [210]. 
In obese rats, HFD and the consequent insulin resist-
ance were observed to elevate the expression of TGFβ1 
[211]. Moreover, hyperglycemia itself can also activate 
HSCs [212]. Interestingly, a meta-analysis revealed 
that nearly all patients with T2DM also exhibit NASH 
[213]. Insulin inhibits lipolysis in adipocytes [214]. 
Upon insulin resistance in adipose tissue, elevated 
release of free fatty acids (FFAs) can be examined. 
These FFAs activate NFκB among others, and lead to 
lipotoxicity, which can result in lipid accumulation in 
the liver [190, 215]. Lipid overload potentiates oxida-
tive stress and liver damage. Accordingly, patients with 
NAFLD show significantly increased serum FFA levels 
[216]. Additionally, overexpression of TNFα and IL-6, 

Fig. 5 Pathophysiology from the healthy liver to NASH. In response to pathogens and FFAs pro-inflammatory cytokines are produced 
within the hepatic tissue by RHMs, Kupffer cells, and hepatocytes. Dietary fat due to HFD leads to lipid accumulation within the liver. 
Pro-inflammatory cytokines, especially an overactivation of NFκB lead to the activation of HSC, which in turn produces extracellular matrix 
contributing to the progression of fibrosis. Kupffer cells undergo apoptosis in a state of increased inflammation and are replaced by RHMs
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which occur in obese adipose tissue, can be involved in 
the progression of NAFLD [217, 218]. Secretion of IL-6 
can elevate the expression of hepatic SOCS3, which 
can contribute to the development of hepatic insulin 
resistance [219] (see Fig. 7). Hepatic insulin resistance 
can also occur due to inhibitory serine phosphoryla-
tion of the insulin signaling molecules Irs1 and Irs2. 
This is caused by overactivation of JNK in hepatocytes 
in response to pro-inflammatory cytokines, ER stress 
and ROS [220]. Conclusively, the liver might contrib-
ute to the development of metabolic syndrome and 
morphologic changes in hepatic tissue are a result of 
increased body mass. Therefore, targeting inflamma-
tion within this organ may improve the outcome of 
metabolic diseases.

This is especially relevant for pediatric patients as it 
has been shown, that in obese adolescents insulin sen-
sitivity and glucose tolerance as well as the risk for the 
development of T2DM are directly linked to liver stea-
tosis [221, 222]. Interestingly, adolescents with NASH 

present with higher serum TNFα and MCP1 and lower 
serum adiponectin levels, thereby displaying a pro-
inflammatory trend [223].

Inflammation and incretins
Gut-derived hormones such as glucose-dependent insu-
linotropic polypeptide (GIP) and glucagon-like peptide 
1 (GLP-1) also contribute to the development and miti-
gation of inflammation within the whole body including 
the hypothalamus (Fig.  7). Studies have demonstrated 
that GIP is associated with increased expression of pro-
inflammatory cytokines and chemokines, while GIP 
infusion induces elevated levels of adipokines and pro-
inflammatory cytokines in adipocytes in vitro [224–229]. 
Centrally administered GIP leads to an increase in pro-
inflammatory cytokines and factors such as Il-6 and 
Socs3 in the hypothalamus in mice [230], diminishes the 
anorectic effects of insulin in the brain and attenuates 
the impact of leptin, resulting in leptin resistance [231]. 
Loss of GIP action is therefore associated with a better 

Fig. 6 Inflammation and fibrosis in hepatic tissue. Alcohol consumption and viral infections can lead to morphologic changes in hepatocytes 
which proceed to undergo apoptosis. These triggers also lead to an infiltration of lymphocytes into the hepatic tissue and an inhibition of NK cells. 
Pro-inflammatory cytokines which are produced by adipose tissue of obese individuals can also initiate activation of HSC. Additionally, microbial 
changes in the gut can lead to a disturbed barrier and an increased infiltration of LPS and bacterial molecules. These bind to TLR and promote 
the production of pro-inflammatory cytokines via Kupffer cells and HSC activation
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outcome in diabetes and resistance towards DIO in mice 
[232, 233], but contradictory a transgenic overexpres-
sion of GIP also promotes resistance to DIO and leads to 
a reduced fat mass in mice [234]. Genetic elimination of 
GIP or its receptor in mice has yielded long-term meta-
bolic protection against diet-induced obesity and insulin 
resistance [224, 235–239]. In the liver, a reduction of GIP 
ameliorates lipid accumulation and lowers the expression 
of markers of inflammation [235, 240, 241]. As GIP recep-
tor (GIPR) is also expressed by myeloid cell lines, which 
include monocytes and macrophages as well as bone 
marrow-derived T cells, Gipr deletion in rodents impacts 
hematopoiesis by decreasing the number of myeloid-
progenitor cells, as well as circulating monocytes and 
macrophages [242, 243]. Moreover, GIPR deficiency and 
the application of an antagonistic GIP receptor antibody 
significantly diminish the levels of pro-inflammatory 
cytokines such as Il-6 and Socs3 in the hypothalamus in 
mice [230]. Acute inhibition of GIPR using neutralizing 
antibodies has shown the ability to substantially reduce 
body weight and improve obesity by enhancing the 

effectiveness of leptin [231, 235, 244, 245]. In humans, 
elevated plasma GIP levels have also been correlated with 
increased expression of pro-inflammatory genes in obese 
individuals [246]. Therefore, GIP is considered a pivotal 
factor in driving leptin resistance and plays a significant 
role in hypothalamic inflammation.

GLP-1 has also been identified as an important regula-
tor of inflammation and metabolic diseases and has been 
targeted as a therapeutic opportunity to improve cardio-
vascular and metabolic outcomes of patients with obe-
sity and T2DM. It is synthesized in the large and small 
bowel and colon as well as in the brain [247, 248]. In the 
pancreas, the binding of GLP-1 to its receptor (GLP-1R) 
stimulates insulin secretion and also increases glucose 
metabolism by promoting insulin synthesis [249]. Addi-
tionally, it preserves beta-cell mass through stimulation 
of cell proliferation and inhibition of apoptosis and is 
therefore improving glycemic control via chronic altera-
tions [250–253].

The secretion of GLP-1 is induced by various fac-
tors such as inflammation, microbial metabolites, and 

Fig. 7 Gut hormone-derived incretins contribute to hypothalamic inflammation and modulate insulin- and leptin-resistance. Over-nutrition 
activates GIP production in the gut, which in turn activates glucose-dependent insulin secretion in the pancreas and also exhibits extra-pancreatic 
functions. Interestingly, in mice, it has been shown that deletion and overexpression of GIP is associated with improved diabetes and resistance 
to DIO. Centrally administered GIP leads to a reduction of JAK-STAT-activation and therefore diminishes leptin activity in the hypothalamus 
and upregulates SOCS3 and IL-6 in mice. Concordantly, intracerebral application of monoclonal antibodies against GIPR leads to a suppression 
of SOCS3 and IL-6 and induces weight loss in mice and non-human primates. This effect is enhanced when combined with GLP-1R agonist. 
Paradoxically, the GIPR-GLP-1R co-agonist also leads to weight loss, reduced food intake, and a decrease in fat mass. These incretins and their 
receptors propose immense pharmacological potential in targeting DIO and its co-morbidities
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cytokines [254–257]. Accordingly, in hospitalized 
patients with critical illness, plasma levels of GLP-1 cor-
relate with the severity and survival [258, 259]. Conclu-
sively, GLP-1 receptor agonists (GLP-1R) can reduce 
systemic inflammation as well as tissue inflammation 
in rodents independent of body weight changes [260, 
261]. However, the underlying mechanism remains 
poorly understood [262]. In the liver, GLP-1 also reduces 
hepatic steatosis and inflammation and can addition-
ally attenuate hepatocyte injury in preclinical studies 
with models of non-alcoholic steatohepatitis (NASH). 
This effect has also been shown in humans with NASH, 
partly independent of weight changes [263–265]. There 
are currently ongoing clinical studies to investigate the 
potential of liraglutide and semaglutide, GLP-1R ago-
nists, to reduce hepatic inflammation in people with 
NASH [266, 267]. In obese patients, liraglutide admin-
istered daily for 48  weeks improved liver histology and 
decreased the progression of fibrosis [267]. The exact 
underlying mechanism remains unclear. Interestingly, 
GLP-1R has been detected in the endothelium, the coro-
nary arteries, and the smooth muscle cells of the heart 
[268, 269]. In cardiovascular outcome trials, GLP-1RA 
reduced the rates of major adverse cardiovascular events 
(MACEs) and liraglutide administration reduced total 
mortality, cardiovascular death, and number of myocar-
dial infarctions in patients [270, 271]. It has also been 
shown that liraglutide improved behavioral profile and 
induced re-myelination in a mouse model of multiple 
sclerosis (MS). These effects are proposed to be due 
to anti-inflammatory, autophagic flux activation, and 
inflammasome suppression [272]. In an in  vivo model 
for experimental autoimmune encephalitis (EAE), lira-
glutide could ameliorate the disease score, was able to 
delay the disease onset and reduce demyelination and 
inflammation scores in the lumbar spinal cord [273]. 
These results suggest the anti-inflammatory effects of 
GLP-1R agonists in the central nervous system and a 
potential therapy option for patients with MS or autoim-
mune encephalitis.

As GLP-1R agonists like liraglutide and semaglutide 
have shown very promising results in clinical stud-
ies, the development of dual- and tri-agonists, which 
also have agonist effects on glucagon-receptors, holds 
immense promise to improve metabolic outcomes for 
people with obesity, T2DM or liver diseases [248]. The 
dual agonist tirzepatide is achieving tremendous weight 
loss in patients with T2DM, improves blood glucose 
levels, and reduces hepatic steatosis. Interestingly, tri-
agonists also show neuroprotective effects in rodent 
models of Alzheimer’s disease and Parkinson’s disease 
[241, 274–281].

Conclusion
There has been clear evidence in vitro, in rodents and in 
humans, that obesity and inflammation are significantly 
interconnected and effect each other on several meta-
bolic levels. Additionally, targeting inflammation in the 
adipose tissue or the hypothalamus introduces new pos-
sibilities to prevent diet-induced obesity as well as insu-
lin and leptin resistance. In this review, we displayed the 
important interplay between gut hormones, adipose tis-
sue, and the hypothalamus in regard to inflammation as 
this is an important pathomechanism in advancing ther-
apy options for obesity. This is of strong importance for 
pediatric patients because the conversion from impaired 
glucose tolerance to the development of T2DM does not 
seem to be a linear process. The progression appears 
much faster in children and adolescents compared to 
adults [282]. Additionally, it has been shown that the 
20-year survival rate free of liver transplant for children 
with NAFLD was about 80% compared to 99% in the 
reference population [283]. There is an urgent need for 
a deeper understanding of the development of comor-
bidities and the interplay of different organ systems, hor-
mones, and cytokines, especially in early life stages.
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