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Abstract 

Background Multisystem inflammatory syndrome in children associated with COVID-19 (MIS-C) is a late complica-
tion of pediatric COVID-19, which follows weeks after the original SARS-CoV-2 infection, regardless of its severity. 
It is characterized by hyperinflammation, neutrophilia, lymphopenia, and activation of T cells with elevated IFN-γ. 
Observing the production of autoantibodies and parallels with systemic autoimmune disorders, such as systemic 
lupus erythematodes (SLE), we explored B cell phenotype and serum levels of type I, II, and III interferons, as well 
as the cytokines BAFF and APRIL in a cohort of MIS-C patients and healthy children after COVID-19.

Results We documented a significant elevation of IFN-γ, but not IFN-α and IFN-λ in MIS-C patients. BAFF was ele-
vated in MIS-C patient sera and accompanied by decreased BAFFR expression on all B cell subtypes. The proportion 
of plasmablasts was significantly lower in patients compared to healthy post-COVID children. We noted the pre-IVIG 
presence of ENA Ro60 autoantibodies in 4/35 tested MIS-C patients.

Conclusions Our work shows the involvement of humoral immunity in MIS-C and hints at parallels with the patho-
physiology of SLE, with autoreactive B cells driven towards autoantibody production by elevated BAFF.

Keywords PIMS-TS, MIS-C, COVID-19, Interferon, BAFF, APRIL, SLE

†Adam Klocperk and Marketa Bloomfield contributed equally to this work and 
shared the first authorship.

*Correspondence:
Adam Klocperk
adam.klocperk@fnmotol.cz
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40348-023-00169-z&domain=pdf


Page 2 of 8Klocperk et al. Molecular and Cellular Pediatrics           (2023) 10:15 

Graphical Abstract

Background
Multisystem inflammatory syndrome in children asso-
ciated with COVID-19 (MIS-C) is now a well-specified 
entity described in a number of excellent publications 
that map in detail the immune/autoimmune/inflam-
matory responses accompanying this condition [1–5]. 
Clinically, the hallmark symptoms include fever, rash, 
conjunctivitis, mucositis and serositis, lymphadenopa-
thy, gastrointestinal, respiratory, cardiovascular, and 
neurocognitive symptoms, which develop on the back-
ground of markedly increased acute phase reactants 
and inflammatory markers in temporal association with 
SARS-CoV2 infection in genetically susceptible indi-
viduals. This pro-inflammatory state is accompanied by 
alterations in cellular populations of innate and acquired 
immunity, with prominent lymphopenia during the acute 
stage of the disease, which typically lags several weeks 
after acute SARS-CoV-2 infection, regardless of its sever-
ity. The lymphopenia is characterized by a decrease in T 
cells, but at the same time with their activation and clonal 
proliferation [1]. Significant alterations were shown in 

T cell subpopulations in MIS-C, and recent reports also 
show their clonality and exhaustion [2, 3]. Importantly, 
a number of publications document the presence of 
autoimmune phenomena and autoantibodies in MIS-C 
patients, targeting both systemic and tissue- or organ-
specific antigens consistent with the systemic nature 
of the disease, yet also associated with its characteristic 
clinical presentation in specific organs, mainly the heart 
[4, 5]. These findings suggest a strong polyclonal antibody 
response driven by activated B cells. B cells, however, are 
less studied in the context of MIS-C. B cell counts were 
reported normal or decreased, in line with the general 
MIS-C-associated lymphopenia [6, 7]. Some studies have 
shown an increase in plasmablasts, as well as  IgD−CD27− 
double negative B cells [8, 9]. Similar IgD and CD27 
double-negative activated B cells were previously docu-
mented in systemic lupus erythematosus (SLE) in asso-
ciation with disease activity and autoantibody secretion 
[4], pointing to a certain parallel in B cell activation and 
autoantibody production between systemic autoimmune 
diseases such as SLE and MIS-C. In SLE, this polyclonal 
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autoantibody production is driven by the serum cytokine 
B cell activating factor (BAFF) and a proliferation-induc-
ing ligand (APRIL) [5, 10]; however, this association has 
not yet been studied in MIS-C.

Similarly, while a dysregulated IFN-γ response is also 
a feature shared between MIS-C and SLE [11–14], the 
activity of type I and type III interferons has so far only 
been shown in SLE and rare inborn autoinflammatory 
disorders [15, 16], but not in MIS-C, even though anti-
bodies against type I interferons have been shown to con-
tribute to COVID-19 mortality and severity [17].

To explore these immune factors contributing to the 
hyperinflammation in MIS-C, we set out to assess type 
I, II, and III interferons, serum BAFF, APRIL, and B cell 
phenotype and BAFFR expression in children with acute 
MIS-C and in healthy children after COVID-19.

Patients and methods
Patients and controls
The MIS-C cohort was recruited from patients admit-
ted to the Department of Pediatrics, University Hospital 
in Motol, Prague, Department of Pediatrics, Thomayer 
University Hospital, Prague, and Department of Pediat-
rics, University Hospital in Pilsen, Pilsen, Czech Repub-
lic. Informed consent with participation in this study 
was signed by the participants’ legal guardians in accord-
ance with the Declaration of Helsinki, and the study was 
approved by the Ethical Committee of the University 
Hospital in Motol, reference no. EK-1376/21. Data on 
demographics, clinical manifestations, routine labora-
tory features, and other investigations, therapeutic man-
agement, and outcomes were collected retrospectively 
from the medical records of the patient or obtained via 
patient/parent interview.

In MIS-C patients, samples were obtained through 
peripheral venepuncture after patient admission, before 
administration of corticosteroids or immunoglobulins. 
Patients were included in the study based on their MIS-C 
diagnosis consistent with WHO criteria [18]. In total, 
50 MIS-C patients were recruited during the inclusion 
period between October 2020 and April 2021, 24 females, 
aged 11 months to 18 years (7.8 ± 4.35 years, mean ± SD). 
The alpha (B.1.1.7) SARS-CoV-2 variant was dominant in 
Czechia during this period.

As a control cohort, 7 healthy children who previ-
ously underwent COVID-19, 2 female, aged 1 to 14 years 
(9.9 ± 3.9  years), were recruited into the study (hereaf-
ter referred to as healthy post-COVID children). These 
healthy donors were sampled 4–6  weeks after their 
SARS-CoV-2 PCR positivity.

For assessment of BAFF and APRIL, 4 MIS-C patients, 
2 females, aged 1.4 to 5.5  years (3.5 ± 1.4  years), were 
re-evaluated 6  months after discharge from hospital 

(hereafter referred to as MIS-C convalescent). Further, 
8 healthy donor children with no history of COVID-19, 
5 females, aged 11.6 to 17.2 years (13.7 ± 1.9 years), were 
included for comparison (hereafter referred to as healthy 
children).

The description of cohorts is summarized in Table 1.

Flow cytometry
For evaluation of peripheral blood B cell phenotype, the 
blood was taken into ethylenediaminetetraacetic acid 
(EDTA)-coated tubes as described above. PBMCs were 
obtained using Ficoll-Paque (Pharmacia, Uppsala, Swe-
den) and cryopreserved in liquid nitrogen.

After thawing, PBMCs were incubated in the pres-
ence of recombinant human DNAse I (Pulmozyme, 
Roche, Prague, Czechia; final concentration was 10  IU/
mL) in complete media (RPMI 1640 supplemented with 
10% of heat-inactivated fetal calf serum, penicillin (50 U/
mL), streptomycin (50 U/mL) and 1.7  mM sodium glu-
tamate) for 30 min at 37 °C in a  CO2 incubator. One mil-
lion cells were resuspended in 100 μL phosphate-buffered 
saline (PBS) (Sigma-Aldrich, St. Louis, MO) and stained 
for 30  min in the dark at room temperature with CD5 
BV421 (Cat No. 562646, BD Biosciences, San Jose, CA), 
IgM BV510 (Cat No. 314522, Biolegend, San Diego, CA), 
BAFFR BV711 (Cat No. 743573, BD Biosciences), and 
a dried mixture of IgD FITC, CD27 PE, CD24 PerCP-
Cy5.5, CD19 PE-Cy7, CD21 APC, and CD38 APC-Cy7 
(Custom-design dry reagent tube, Exbio Praha, Vestec, 
Czechia). Then, 2 mL of BD FACS™ Lysing Solution (BD 
Biosciences) was added and cells were incubated for 
10 min in the dark, room temperature. In the end, cells 
were washed once in PBS with 1% BSA and pellets were 
resuspended in 150 μL PBS.

Flow cytometry measurement was performed on BD 
FACSLyrics (BD Immunocytometry Systems, San Jose, 
CA). FlowJo software was used for data analysis (TreeS-
tar, Ashland, OR).

ELISA
For evaluation of serum cytokine levels, the blood 
was taken into uncoated tubes as described above, 

Table 1 Cohort characteristics

n Sex Age years range 
(mean ± SD)

MIS-C 50 24 females 0.9–18 (7.8 ± 4.35)

MIS-C convalescent 4 2 females 1.4–5.5 (3.5 ± 1.4)

HD children post-COVID 7 2 females 1–14 (9.9 ± 3.9)

HD children 8 5 females 11.6–17.2 (13.7 ± 1.9)
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and serum was separated by centrifugation and stored 
frozen at − 80  °C until further evaluation. BAFF and 
APRIL were measured according to the manufacturer’s 
specifications using pre-made ELISA kits (BAFF from 
R&D Systems, Minneapolis, USA, APRIL from Abcam, 
Cambridge, UK). Type I, II, and III interferons (spe-
cifically, pan-IFN-α, IFN-γ, and IFN-λ1) were quanti-
fied following the manufacturer’s protocols of Human 
ELISA Basic KIT (HRP) (MABTECH, Sweden) using 
Nunc MaxiSorp flat-bottom 96-well plates (Invitro-
gen). An absorbance of 450 nm was read by multimode 
plate reader EnVision 2105 (PerkinElmer).

Statistics
Statistical analysis was performed using Brown-
Forsythe and Welch one-way analysis of variance 
(ANOVA) and unpaired t tests with Welch’s correction 
in GraphPad Prism 8.0 (San Diego, CA, USA). Val-
ues of p = 0.01–0.05 (*), p = 0.001–0.01 (**), p < 0.001 
(***), and p < 0.0001 (****) were considered statistically 
significant.

Results
To analyze the hyperinflammatory signature of MIS-C, 
we measured IFN-α, IFN-γ, and IFN-λ in the serum of 
50 patients with MIS-C sampled shortly after admission 
to hospital, before administration of immunosuppres-
sive therapy, and compared them to the sera of healthy 
children who underwent COVID-19 cca 6  weeks prior 
to sampling and had no signs of MIS-C. We saw no sig-
nificant changes in IFN-α (t test with Welch’s correc-
tion p = 0.27) and IFN-λ levels (p = 0.33) (Fig. 1A, B), but 
IFN-γ was significantly elevated in MIS-C compared to 
healthy post-COVID children (p = 0.0004) (Fig. 1C).

Next, we measured the presence of autoantibod-
ies and serum concentration of BAFF and APRIL, two 
cytokines supporting the development and survival of B 
cells, which are also implicated in other systemic auto-
immune diseases reminiscent of MIS-C, such as SLE, 
systemic vasculitides, or Kawasaki disease [19–21]. 
Of 35 patients in whom autoantibodies were tested, 
4/35 (11%) had positive Ro60 antibodies, 1/35 (3%) had 
autoantibodies against the Sm antigen, and further, 4/35 
(11%) had positive extractable nuclear antigen (ENA) 

Fig. 1 Cytokines in MIS-C patients. A IFN-α, B IFN-λ, and C IFN-γ in MIS-C patients and healthy donor children 6 weeks after COVID-19. D APRIL 
and E BAFF in MIS-C patients, convalescent MIS-C patients 6 months after disease resolution, healthy donor children 6 weeks after COVID-19, 
and healthy donor children with no history of COVID-19 or MIS-C
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screening. Serum levels of APRIL were largely below 
the assay detection limit, although in a subset of MIS-C 
patients we detected elevated APRIL levels, which were 
missing in post-COVID children, healthy children with 
no history of COVID-19 or MIS-C, and even in conva-
lescent MIS-C patients sampled several months after 
full recovery (Fig. 1D). The clinical course of the disease 
was not distinctly different in these 4 children with high 
APRIL, and nevertheless, the majority of samples tested 
APRIL-negative, and as such, the differences were not 
significant.

Serum BAFF levels, on the other hand, varied sig-
nificantly between acute MIS-C, convalescent MIS-C 
patients, post-COVID healthy children, and children 
with no history of COVID-19 or MIS-C (Brown-Forsythe 
ANOVA, p < 0.0001) (Fig. 1E). Acute MIS-C patients had 
the highest BAFF levels of all cohorts, which in particu-
lar were higher than those in post-COVID children (t 
test with Welch’s correction, p < 0.0001), but also than 
those in convalescent post-MIS-C patients (p < 0.0001). 
Interestingly, even healthy post-COVID children had 
elevated serum BAFF levels compared to healthy chil-
dren without a history of COVID-19 (p = 0.0093). In 
both MIS-C patients and healthy children, the trend 
remained identical, with higher BAFF during/after dis-
ease, and lower after full recovery or in times of full 
health.

Finally, to assess the impact of upregulated BAFF sign-
aling on B cell development, we performed B cell subpop-
ulation phenotyping in patients and healthy donors. We 
noted a highly significant decrease of circulating plasma-
blasts (p < 0.0001), less significant decrease of transitional 
B cells (p = 0.029), and a slight but insignificant expansion 
of naïve B cells in MIS-C patients (Fig. 2A, B). Addition-
ally, all MIS-C B cells had strikingly suppressed BAFF 
receptor (BAFFR) expression (Fig. 2C). This was true in 
all B cell subsets, including the naïve and transitional 
subsets.

Discussion
In this study, we explored the role of type I and II inter-
ferons and the dysregulation of humoral immunity in 
MIS-C, drawing on parallels with other autoimmune dis-
eases, such as SLE.

Our results point towards comparable type I inter-
feron response between acute MIS-C and post-
COVID-19 children without MIS-C, but demonstrate 
increased levels of type II interferon (IFN-γ) between 
these groups. Type II interferon has been described as a 
dominant feature of MIS-C previously [11, 12] and may 
reflect the concurrent T cell activation [1]. However, 
B cell-intrinsic IFNgR signaling has also been shown 

to evoke spontaneous generation of autoreactive ger-
minal centers and its knock-out results in protection 
from systemic autoimmunity in animal models [19, 20]. 
Therefore, the increased IFN-γ levels may represent a 
contributing mechanism to the autoantibody induc-
tion in MIS-C. On the other hand, our data suggests 
that lingering type I and III interferon inflammation 
are not robust driving factors behind MIS-C pathogen-
esis, despite their role in the anti-SARS-CoV-2 immune 
response [17, 19].

The elevation of IFN-γ and the presence of autoim-
mune phenomena in MIS-C draws a parallel to SLE, 
which prompted the exploration of B cell immunity 
in our patients [13, 20]. Although we did not find any 
significant differences in the serum levels of the B cell 
survival-promoting cytokine APRIL between healthy 
donors, acute, convalescent MIS-C, and post-COVID 
children, we did observe a stark elevation of BAFF 
in acute MIS-C children and less so in healthy post-
COVID children. Porritt et  al. also found increased 
BAFF mRNA levels in MIS-C children [22]—this sig-
nificant increase of BAFF levels in MIS-C is consistent 
with polyclonal B cell activation resulting in the spec-
trum of detected autoantibodies and clinical manifesta-
tions of MIS-C-associated autoimmune systemic and 
organ inflammation. In our cohort, of 35 patients in 
whom autoantibodies were tested, 4/35 (11%) had posi-
tive Ro60 antibodies and further 4/35 (11%) had positive 
extractable nuclear antigen (ENA) screening. Previous 
studies reported the presence of anti-La, a characteristic 
autoantigen of SLE and Sjogren’s disease, and anti-Jo-1, 
characteristic of idiopathic inflammatory myopathies, 
in MIS-C patients [21]. Although later works suggested 
that these autoantibodies may be derived from high-
dose intravenous immunoglobulins [23], administered 
to the MIS-C patients, our samples were obtained prior 
to the treatment. The combination of increased IFN-γ 
and a consequent increase of BAFF has been previously 
described in SLE, again suggesting an analogy between 
MIS-C and SLE [24]. Interestingly, in the case of SLE, 
it has been shown that neutrophils can contribute to 
an increase in BAFF and a strengthening of the auto-
immune process. In the case of MIS-C, hallmarked by 
marked neutrophilia and disturbed neutrophil function-
alities [25, 26], a similar parallel might exist and contrib-
ute to the induction of autoimmunity [27].

Finally, we observed a shift in the maturation of B 
cells, skewing their subpopulations towards antibody-
producing plasmablasts and away from the early tran-
sitional B cells in MIS-C children. Such reduction of 
plasmablasts is interesting given their lower reliance 
on BAFF for survival, which is also bolstered by APRIL 
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[28]. Instead, naïve and transitional B cells, which are 
highly dependent on BAFF for survival [29], were both 
decreased in MIS-C children. However, at the same 
time, all MIS-C B cells had strikingly suppressed BAFF 
receptor (BAFFR) expression (Fig. 2C)—including naïve 
and transitional. These results are consistent with the 
similar situation observed in SLE, where high levels of 

BAFF are associated with decreased BAFFR expression 
on all B cell subtypes [30].

In summary, our brief report complements the cur-
rent understanding of the dysregulation of humoral 
immunity and autoimmune phenomena seen in MIS-C 
and highlights the important role of the BAFF-BAFFR 
axis in their induction.

Fig. 2 B cell phenotype in MIS-C patients. A, B B cell subpopulations in MIS-C patients and healthy donor children 6 weeks after COVID-19. C 
BAFFR expression in naive, transitional, MZ-like, switched memory, and plasmablast B cells of MIS-C patients and healthy donor children 6 weeks 
after COVID-19
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