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Abstract 

Many inborn errors of immunity (IEI) manifest with hallmarks of both immunodeficiency and immune dysregulation 
due to uncontrolled immune responses and impaired immune homeostasis. A subgroup of these disorders frequently 
presents with autoimmunity and lymphoproliferation (ALPID phenotype). After the initial description of the genetic 
basis of autoimmune lymphoproliferative syndrome (ALPS) more than 20 years ago, progress in genetics has helped 
to identify many more genetic conditions underlying this ALPID phenotype. Among these, the majority is caused 
by a group of autosomal-dominant conditions including CTLA-4 haploinsufficiency, STAT3 gain-of-function dis-
ease, activated PI3 kinase syndrome, and NF-κB1 haploinsufficiency. Even within a defined genetic condition, ALPID 
patients may present with staggering clinical heterogeneity, which makes diagnosis and management a challenge. In 
this review, we discuss the pathophysiology, clinical presentation, approaches to diagnosis, and conventional as well 
as targeted therapy of the most common ALPID conditions.
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Introduction
Lymphoproliferation and autoimmunity are relevant 
manifestations of immuno-hematological diseases. While 
lymphadenopathy or autoimmune cytopenia in isola-
tion are relatively common and, in most cases, due to 
secondary causes, the combination of these manifesta-
tions raises suspicion for a genetic disease, in particular if 
associated with other warning signs of an inborn error of 

immunity (IEI) [1]. These warning signs include clinical 
manifestations such as increased susceptibility to infec-
tion, additional autoimmune manifestations, lymphoma, 
and indicators raising the likelihood of a genetic disease 
such as a positive family history, consanguinity or syn-
dromal manifestations, and immunological abnormalities 
upon laboratory screening. Diagnosis of an underlying 
IEI is important because of its consequences for progno-
sis and therapy.

Immune responses are highly dynamic and require 
tight regulation of proliferation and cell death to main-
tain homeostasis. Impaired immune homeostasis leads to 
uncontrolled proliferation of immune cells, manifesting 
as benign or malignant lymphoproliferation in the form 
of lymphadenopathy, proliferation of mucosa-associated 
lymphoid tissue, and hepato- or splenomegaly. Uncon-
trolled, overactive adaptive immune response may also 
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lead to autoimmunity of almost any organ, and favor 
immune exhaustion or senescence, paradoxically lead-
ing to increased infection susceptibility. It is therefore no 
surprise that many IEI manifest with hallmarks of both 
immunodeficiency and autoimmune-lymphoprolifera-
tive manifestations [2]. Autoimmune lymphoprolifera-
tive syndrome (ALPS) caused by mutations in the genes 
responsible for the extrinsic apoptotic pathway (FAS, 
FASLG, CASP10) was the first inherited disease present-
ing with autoimmunity and lymphoproliferation (autoim-
mune lymphoproliferative immunodeficiency (ALPID) 
phenotype) that could be linked to a genetic deficiency 
[3, 4]. However, ALPS could only explain a part of these 
cases (around 20%). In recent years, progress in genet-
ics has helped to provide a molecular diagnosis to many 
more ALPID patients. Next to ALPS, several autosomal-
dominant conditions have been identified, which explains 
another around 20% of cases. They include cytotoxic T 
lymphocyte-associated antigen-4 (CTLA-4) haploinsuf-
ficiency [5, 6], signal transducer and activator of tran-
scription 3 (STAT3) gain-of-function (GOF) disease [7], 
activated phosphoinositide 3-kinase δ syndrome (APDS) 
[8–11], and nuclear factor kB1 (NF-κB1) haploinsuf-
ficiency [12]. Patients with mutations in more than 50 
rare autosomal-recessive genes can also present with an 
ALPID phenotype (around 10% of cases) [13]. Among 
these, lipopolysaccharide-responsive vesicle traffick-
ing, beach- and anchor-containing (LRBA) deficiency 
is particularly notable because of its pathophysiological 
relationship to CTLA4 haploinsufficiency [14]. Despite 
all progress, however, half of the patients still cannot be 
assigned a molecular diagnosis.

In this review, we discuss the pathophysiological basis 
of the more frequent and mostly autosomal-dominant 
ALPID conditions and their phenotypic spectrum, as 
well as laboratory and immunological abnormalities, the 
approach to diagnosis, and targeted therapies.

Mechanisms of immune tolerance and homeostasis
The development of a functionally competent adaptive 
immune system involves the generation of a wide reper-
toire of B (BCR) and T cell receptors (TCR) during the 
maturation of B and T cells in the bone marrow and the 
thymus, respectively. A high percentage of TCRs and 
BCRs generated on maturing cells has been shown to 
be self-reactive by recognizing self-antigens. In the bone 
marrow, for instance, up to 75% of the antibodies gener-
ated by immature B cells have been reported to be self-
reactive [15]. Depending on the lineage, cell clones with 
high BCR/TCR affinity for self-antigens may undergo 
clonal deletion via apoptosis, clonal anergy due to a lack 
of co-stimulation, clonal diversion to regulatory T cells, 
or secondary gene rearrangement (receptor editing) 

[16, 17]. A proportion of self-reactive T cells transforms 
in an interleukin-2 (IL-2)-dependent manner into 
CD25 + forkhead box protein P3 (FoxP3) + regulatory T 
(Treg) cells, which in turn are master effectors of periph-
eral tolerance [18].

To maintain peripheral immunological tolerance and 
prevent autoimmunity, the processes of anergy and apop-
tosis play an essential role. The two-step process of B and 
T cell activation is tightly regulated. Major histocompat-
ibility complex (MHC) molecules on antigen-presenting 
cells (APCs) are recognized by TCR on naïve T cells (first 
signal), which in turn may lead to the formation of an 
immunological synapse favoring engagement of the co-
stimulatory or cytokine receptors (second signal) (e.g., in 
T cells CD28 binds to the CD80/CD86 ligands on APCs) 
[19]. If this second signal is missing, a state of hypore-
sponsiveness (anergy) ensues. CTLA-4 expression  on 
T reg cells can downregulate the CD80/CD86 ligands, 
thus leading to anergy [20, 21]. The CTLA-4-independ-
ent functions of Treg in the maintenance of peripheral 
tolerance include secretion of inhibitory cytokines and 
metabolic disruption [22]. Deletion of self-reactive or 
activated lymphocytes via apoptosis is another important 
mechanism in the maintenance of immune homeostasis 
and prevention of autoimmunity [23].

Autoimmune lymphoproliferative syndrome (ALPS)
Lymphocyte apoptosis contributes to peripheral immune 
homeostasis by regulating the pool size of certain lym-
phocyte populations in lymph nodes and spleen. Recep-
tor-mediated apoptosis via the Fas signaling pathway is 
essential to control unique populations of mammalian 
targets of rapamycin (mTOR)-dependent hyperprolif-
erative T and B cells, which contain autoreactive spe-
cificities. Fas (also called CD95, Fas antigen, Apo-1) is a 
trimeric receptor of the tumor necrosis factor-receptor 
(TNF-R) family found on a variety of cells including 
mature lymphocytes. Upon interaction with its ligand, 
FasL, the Fas receptor recruits the adaptor Fas-associ-
ated death domain (FADD) [24–26]. FADD in turn forms 
the so-called death-induced signaling complex (DISC) 
together with pro-caspase-8. Following activation, cas-
pase-8 and caspase-10 then initiate apoptosis [24, 25]. 
Since apoptosis is induced in a controlled manner 
through the interaction of a death factor and its receptor, 
FasL/Fas-induced apoptosis is classified as activation-
induced cell death (AICD) [27].

Mutations in the genes encoding modules of the Fas-
FasL apoptotic pathway (FAS, FASLG, FADD, CASP10) 
lead to ALPS (Fig. 1) [28]. Research into ALPS as a non-
malignant, non-infectious cause of uncontrolled lym-
phocyte proliferation and accompanying autoimmunity 
was initiated after the first description of dramatic 
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lymphoproliferation in lpr strain mice with lupus-like 
phenotype [29] and the subsequent discovery of deleteri-
ous homozygous mutations in the murine FAS receptor 
[30]. Heterozygous FAS mutations affect the intracellular 
death domain of the protein, but still allow Fas expression 
on the cell surface, acting dominant-negative because 
they prevent trimerization and successful DISC forma-
tion. They can be either germline (ALPS-FAS) [3, 4] or 
somatic (ALPS-sFAS). Acquisition of a somatic muta-
tion in hematopoietic progenitor cells leads to growth 
advantage for Fas-controlled T cells. They accumulate as 
CD3 + CD4-CD8-TCRab + double negative T cells (DNT) 
which are enriched for the disease-causing mutation [31, 
32]. Isolation of DNA from sorted DNT therefore facili-
tates diagnosis of somatic variants. Dominant-negative 
somatic FAS mutations underlie around 15% of all ALPS 
cases [32].

In contrast, heterozygous mutations completely abol-
ishing Fas expression, mostly affecting the extracellular 
or transmembrane domain, do not act dominant-nega-
tive, but cause a 50% reduction of total protein expression 
[33]. These mutations have a very low penetrance unless 

combined with an additional, somatic “hit” in the second 
allele. This might be a somatic missense mutation leading 
to compound-heterozygous mutations in cells affected 
by the second “hit,” or loss of heterozygosity (LOH) via 
uniparental disomy (ALPS-FAS-sLOH) [34, 35]. These 
second genetic events usually occur in hematopoietic 
progenitors, but are enriched in DNT to which they con-
fer a selective growth advantage. Rarely, biallelic germline 
mutations in FAS lead to the development of ALPS [33].

Most patients with ALPS due to a FAS mutation present 
at a young age (median age of onset 2, 7 years) with lym-
phadenopathy, splenomegaly, and autoimmunity, mainly 
but not limited to autoimmune cytopenia [36]. Patients 
also frequently show polyclonal hypergammaglobu-
linemia (IgG and IgA), but can also develop hypogam-
maglobulinemia. The carrier status of a deleterious FAS 
mutation does not necessarily lead to clinical manifesta-
tions, even if such individuals exhibit reduced apoptosis, 
an increased percentage of DNT, and elevated biomark-
ers such as sFasL and vitamin B12 [36]. A sometimes 
massive expansion of DNT is observed in most ALPS 
patients [4]. Fas-controlled DNT are highly proliferative 

Fig. 1 Illustration of the Fas-FasL pathway. Fas (CD95) is a trimeric receptor of the tumor TNF-R family and after binding of the Fas ligand (FasL, 
CD95L), recruits the adaptor FADD, which in turn forms the so-called DISC together with pro-caspase-8 and pro-caspase-10. Following activation, 
caspase-8 and caspase-10 then initiate the extrinsic apoptotic pathway leading to proteolysis, DNA degradation, and apoptosis. Mutations 
in the genes responsible for the Fas-FasL signaling cascade (FAS, FASLG, FADD, CASP10) lead to the development of ALPS. Hallmarks of the disease are 
increased ALPS biomarkers (Vitamin B12 and sFasL), as well as a massive expansion of double-negative T cells (DNT). Increased AKT/mTOR activation 
leads to DNT hyperproliferation and can be inhibited via mTOR inhibitors such as sirolimus (rapamycin)
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and secrete high amounts of IL-10, sFASL, and the vita-
min B12 carrier protein haptocorin. They can be deline-
ated from conventional DNT by the marker combination 
CD38 and CD45RA, which are not co-expressed on any 
other known T cell subset [37]. sFASL and vitamin B12 
are excellent diagnostic biomarkers for the disease with 
positive and negative predictive values above 90% [38–
40]. FAS-deficient B cells show an increased propensity to 
develop into auto-reactive switched memory B cells [41]. 
The aberrant class-switching explains the hypergam-
maglobulinemia (IgG and/or IgA) and the reduction in 
IgM. At the same time, marginal zone B cells are reduced, 
which leads to an impaired anti-polysaccharide response 
[42]. In contrast to other ALPID, such as CTLA-4 hap-
loinsufficiency or LRBA deficiency, tissue lymphocytosis 
in ALPS is mostly confined to the secondary lymphoid 
organs. On histopathological examination, follicular and 
paracortical hyperplasia of lymphoid organs with expan-
sion of DNT cells is usually observed [43].

Only a few patients with disease-causing mutations 
in other components of the Fas pathway have been 
described in the literature. FAS ligand deficiency (ALPS-
FASLG) follows an autosomal-recessive inheritance and 
presents clinically like homozygous ALPS-FAS [44–46]. 
No convincing disease association of heterozygous 
FASLG mutations has so far been described [47–49]. 
FADD deficiency also follows an autosomal-recessive 
mode of inheritance, but the clinical phenotype of this 
disease is more complex. While patients show variable 
lymphoproliferation/splenomegaly, they have also been 
reported to present with recurrent episodes of encepha-
lopathy and invasive pneumococcal disease, as well as 
severe viral infections [50–52]. This points to additional 
Fas-independent effects in FADD deficiency. Similarly, 
CASP8 mutations cause a more complex combined 
immunodeficiency. Finally, CASP10 mutations were ini-
tially reported to be associated with ALPS, but the evi-
dence is not convincing so far [53, 54].

Malignancies, mostly B and T cell lymphomas, and 
rarely non-lymphoid malignancies have been described 
in patients with ALPS-FAS with median onset in late 
adolescence or early adulthood [36, 55, 56]. Nonetheless, 
a long-term survival of ALPS-FAS was estimated to be 
about 85% by age 50 [36]. Interestingly, non-malignant 
lymphoproliferation and autoimmune manifestations 
such as cytopenia may spontaneously improve with age 
[36, 55].

CTLA‑4 insufficiency and LRBA deficiency
Inhibitory receptors such as CTLA-4 play an impor-
tant role in immune regulation and peripheral immu-
nological tolerance by inhibiting immune cell activation 
[21]. CTLA-4 is upregulated on activated T cells and 

constitutively expressed on FoxP3 + Tregs [57, 58]. Upon 
T cell stimulation, endosomal CTLA-4 is transported to 
the cell surface, where it negatively impacts the immuno-
logical synapse by outcompeting CD28 for binding to the 
costimulatory ligands CD80/CD86. Moreover, CTLA4 
downregulates costimulation by ripping out CD80/86 
from the membrane via a process called trogocytosis or 
trans-endocytosis [59, 60]. While FoxP3 + Tregs limit 
autoimmunity, they are also enriched in tumors and 
impair anti-tumor immunity [61], which can be dramati-
cally improved via immune checkpoint inhibition [62]. 
CTLA-4 checkpoint inhibitors are currently a part of the 
standard therapy regimen in many malignancies.

Heterozygous autosomal-dominant mutations in the 
CTLA4 gene in humans were first described in 2014 
(Fig. 2). They can be associated with an ALPS-like con-
dition with prominent immune dysregulation and lym-
phoproliferation [5, 6]. Age of onset can be in early 
childhood but is often in late adolescence; however, 
clinical penetrance is variable, since 30–40% of muta-
tion carriers remain broadly asymptomatic. No cor-
relation between specific mutations and the disease 
severity has been observed [6, 63]. In contrast to ALPS, 
the lymphocyte accumulation is not limited to second-
ary lymphoid organs: infiltrates can be seen in diverse 
organs with predominance of the intestine, brain, and 
lungs [63]. This is associated with various autoimmune 
complications including autoimmune cytopenias, enter-
opathy, thyroiditis, diabetes mellitus type 1, or autoim-
mune skin conditions [5, 6, 63]. This broad phenotype 
is explained by the important immune tolerance mech-
anisms mediated via CTLA-4. Patients with CTLA-4 
haploinsufficiency patients frequently fulfill diagnostic 
criteria for common variable immunodeficiency (CVID) 
due to a marked decrease in switched memory B cells 
and hypogammaglobulinemia (IgA, IgG, and/or IgM). 
This is associated with increased infection susceptibility 
[63]. Interestingly, a subset of exhausted B cells includ-
ing self-reactive specificities, called CD21low B cells is 
frequently also elevated in mutation carriers [5, 6, 63, 
64], which highlights the importance of CTLA-4-me-
diated regulation of humoral immunity and preven-
tion of autoantibody formation [65]. The percentage of 
FoxP3 + Treg cells is increased, even in asymptomatic 
mutation carriers [63].

Functional CTLA-4 protein deficiency leading to 
impaired Treg function, but without mutations in the 
CTLA-4 gene, can be observed in LRBA deficiency 
[66]. The LRBA protein protects intracellular CTLA-4 
from lysosomal degradation [66], maintaining the pool 
of available CTLA-4 protein prior to immune cell acti-
vation, thus acting indirectly in concert with CTLA-4 
as an immune checkpoint. Hence, biallelic mutations 
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in LRBA are associated with a phenotypically similar 
syndrome of immune dysregulation, lymphoprolif-
eration, hypogammaglobulinemia, enteropathy, and 
increased infection susceptibility [14, 66]. The disease 
is more severe with onset in early childhood (median 
2 years) and almost complete penetrance. Autoimmune 
manifestations are more common when compared to 
CTLA-4 haploinsufficiency [67–70]. The increased 
penetrance of LRBA deficiency might be due to the 
even lower total levels of the CTLA-4 protein than in 
CTLA-4 haploinsufficiency due to its increased lysoso-
mal degradation [69]. In terms of immune phenotype, 
FoxP3 + Tregs, switched memory B cells and plasma-
blasts are usually reduced, while CD21low B cells are 
increased [67, 71].

There are no reliable biomarkers for the diagnosis of 
CTLA4 haploinsufficiency or LRBA deficiency, rendering 
genetic analysis the key diagnostic procedure. If muta-
tions of unknown significance are detected, further diag-
nostic procedures may include LRBA protein expression 
via flow cytometry or Western blot, or CTLA-4 expres-
sion and CTLA-4-dependent trans-endocytosis of CD80 
via Treg cells [68].

In a review of published CTLA-4 haploinsufficiency 
cases, autoimmunity and hypogammaglobulinemia pre-
ceded the development of malignancy, with a cumula-
tive incidence of disease manifestations increasing up 
to 70% at age 40 [72]. In a cohort of 131 patients, 12.9% 
developed malignancy with a median onset between 32 
and 34 years of age, most commonly lymphoma or gastric 
cancer, with EBV viremia posing a significant risk factor 
[73]. LRBA deficiency is a more severe disease, although 
the occurrence of cancer is less frequent [67, 70]. A cur-
rent report by Tesch et al. showed a 50–60% probability 
of survival 15–20 years after disease onset, irrespective of 
the treatment modality [70].

Germline STAT3 gain‑of‑function (GOF)
STAT3 is a part of the family of STAT, and as such, a key 
transcription factor involved in the regulation of multi-
ple immune activation and differentiation pathways [74]. 
STAT3 is activated by numerous cytokine receptors after 
binding of their ligand. They include the common gamma 
chain (IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21), the gp130 
(e.g., IL-6, IL-11, IL-27), IL-10 (e.g., IL-10, IL-22), IL-12, 
IL-23, and interferon (IFNα, IFNβ, and IFNγ) receptor 

Fig. 2 The two-step process of T cell activation. To counteract it, CTLA-4 in endosomes reaches the cell surface, outcompetes CD28, and binds 
and downregulates CD80/CD86 in a process called trogocytosis. LRBA acts intracellularly to stabilize and protect intracellular CTLA-4 from lysosomal 
degradation, thus maintaining the pool of available CTLA-4. Both in CTLA-4 haploinsufficiency and LRBA deficiency, lack of CTLA-4 (either 
due to decreased translation or increased lysosomal degradation) limits the function of regulatory T cells. Abatacept is a soluble CTLA-4 
immunoglobulin fusion protein (Fc-region of human IgG1 linked to the extracellular domain of CTLA-4), which mimics CTLA-4 function and can be 
used successfully as a targeted therapy in both conditions
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families, as well as receptors for macrophage and granu-
locyte colony-stimulating factors and hormones such as 
epidermal growth factor, growth hormone, or insulin-
like growth factor. The binding of these cytokines to their 
specific receptor allows for the activation of an associ-
ated Janus Kinase (JAKs) and subsequent phosphoryla-
tion of the tyrosine residues on the intracellular domains 
of the receptor [75]. This in turn leads to the recruitment 
and phosphorylation of the STAT3 transcription regula-
tor and its homo- or heterodimerization, translocation 
to the nucleus, and binding to STAT3-responsive DNA 
sequences which initiates transcription of cytokine-
responsive genes and thus a variety of immune responses 
[75]. Unphosphorylated STAT3 also mediates a variety 
of non-canonical pathways, such as IL-6-mediated acti-
vation of NF-κB [76]. Suppressors of cytokine signaling 
3 (SOCS3) and protein inhibitors of activated STAT3 
(PIAS3) negatively regulate STAT3 function [77].

The essential function of STAT3 in maintaining 
immune homeostasis was first shown in hyper-immu-
noglobulin E syndrome (HIES), a severe immunodefi-
ciency due to dominant-negative mutations in the STAT3 
gene [78, 79]. Somatic activating (GOF) mutations in 

STAT3 were first described in relation to malignant lym-
phoproliferation and often cluster in the SH2 dimeri-
zation and activation domain of STAT3 [80, 81]. In 
contrast, germline STAT3 GOF mutations (Fig.  3) lead 
to an early-onset disease of poly-autoimmunity and lym-
phoproliferation and are found in all functional domains 
of the protein [7, 82–84].

Patients present with variable symptoms, such as lym-
phoproliferation/splenomegaly, autoimmune cytopenia, 
type I diabetes in infancy, and enteropathy, as well as 
short stature and increased susceptibility to viral and bac-
terial infections [7, 82, 83]. Early severe interstitial lung 
disease affects some patients, and systemic vasculopathy 
may also develop [84]. Of note, early-onset diabetes (< 2 
years of age) is rarely seen in other IEI from the ALPID 
spectrum. The age of onset is early (2–3 years of age) 
with incomplete clinical penetrance and sequential devel-
opment of disease manifestations [84, 85]. Jägle et  al. 
characterized different STAT3 GOF mutations and clus-
tered them in three groups depending on their molecular 
activation mechanisms, which correlated to some extent 
with the observed variable clinical penetrance [86]. Some 
of the disease manifestations, such as short stature and 

Fig. 3 Illustration of the JAK/STAT pathway. After binding to their receptor, cytokines such as IL-6 activate an associated Janus Kinase (JAK), which 
upon phosphorylation of its tyrosine residues recruits and phosphorylates the STAT3 transcription regulator. Phosphorylated STAT3 in turn forms 
homo- or heterodimers which translocate into the nucleus and impact the transcription of cytokine-responsive genes. In STAT3 GOF, the signaling 
pathway can lead to increased phosphorylation, altered dimer formation, as well as changes in gene expression. Targeting molecules which are 
part of the STAT3 pathway leads to improved STAT3 GOF disease control, e.g., disruption of the IL-6/IL-6R interaction via the anti-IL-6R monoclonal 
antibody tocilizumab. Another strategy is the inhibition of JAK by jakinibs such as ruxolitinib
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susceptibility to infection, can be explained by the effect 
of constitutive STAT3 activation on the activity of other 
STATs, e.g., decreased growth hormone-STAT5 and 
Interferon-STAT1 signaling, respectively [82, 83, 87]. 
The deficient STAT5-response explains the clinical over-
lap between STAT3 GOF and STAT5B loss-of-function 
(LOF)-associated disease [88].

The immune phenotype is not sufficiently characteris-
tic for disease diagnosis. Hypogammaglobulinemia with 
reduced switched memory and increased CD21low B 
cells is a common feature, whereas reduced naive CD4 
T cells, elevated CD57 + CD8, and DNT cells can be 
observed in some of STAT3 GOF patients [83, 84, 89]. 
Interestingly, STAT3 GOF mutations lead to reduced 
Treg populations, in line with the known suppressive 
effect of STAT3 activity on FoxP3 expression and Treg 
development [90, 91]. Decreased IL-2-mediated STAT5 
signaling in STAT3 GOF may also contribute to the 
observed defect in Tregs [90, 92]. There is no gold stand-
ard for functional analyses of STAT3 mutations, but most 
frequently, the mutant allele is expressed in a STAT3-
deficient cell line followed by a luciferase reporter assay 
to measure its transcriptional activity [86].

In contrast to other disorders of the ALPID spectrum, 
malignancy seems to occur less frequently in patients 
with activating germline STAT3 mutations: in a cohort of 
191 patients, 12 developed cancer, most commonly mar-
ginal zone B cell and LGL lymphomas [84]. STAT3 GOF 
patients usually present with very early-onset endocrine 
and gastrointestinal manifestations, which may be diag-
nostic clues for the disease, followed by lymphoprolifera-
tion, autoimmune cytopenia, and interstitial lung disease 
[84, 85]. Early diagnosis is essential for survival, since 
severe cases with enteropathy, autoimmune hepatitis, 
and oxygen dependence are associated with early death 
[84]. 

NF‑κB1 haploinsufficiency
NF-κB  transcription factors play an essential role as 
regulators of the innate and adaptive immunity. The 
NF-κB family consists of NF-κB1 (p50 and its precur-
sor p105), NF-κB2 (p52 and its precursor p100), RelA 
(p65), c-Rel, and RelB [93–95]. These proteins share a 
Rel homology domain for DNA binding and dimeriza-
tion, with a variety of dimers (the two canonical are 
p50:p65 and p52:RelB) forming in the cytosol [93–95]. 
At rest, NF-κB dimers are bound to inhibitory IκB pro-
teins in the cytoplasm. Degradation of the IκB proteins 
occurs through phosphorylation by the IκB kinase (IKK) 
complex consisting of the catalytically active IKKα and 
IKKβ, and the regulatory subunit IKKγ (NEMO), and 
leads to the release of bound NF-κB dimers, which 
then translocate to the nucleus [93–95]. The canonical 

NF-κB1 pathway can be activated by a variety of signals 
from receptors, such as the tumor necrosis factor recep-
tor (TNF-R), antigen, and pattern-recognition receptors 
(PRR). After IKKβ and NEMO-dependent degradation 
of IκB, p65-containing heterodimers translocate into the 
nucleus, where they regulate gene expression [93]. While 
increased activation of the NF-κB pathways is associated 
with malignancy [96], loss-of-function mutations affect-
ing NF-κB signaling may lead to a variety of immunode-
ficiencies [97].

Heterozygous loss-of-function mutations in NFKB1 
associated with reduced protein levels of the p105 and/
or p50 subunit cause a complex immunodeficiency 
(Fig.  4), frequently associated with lymphoproliferation 
and autoimmune manifestations [12, 98–100]. Age of 
onset and clinical penetrance are highly variable, with 
symptoms developing between 6 months and 79 years 
(median 12 years) of age [100]. In a report by Tuijnen-
burg et  al. about 40% of mutation carriers remained 
asymptomatic, even though p50 expression was reduced 
in all carriers [98]. Patients with NF-κB1 haploinsuffi-
ciency present most commonly with respiratory infec-
tions, hypogammaglobulinemia, autoimmune cytopenia, 
and organ-specific autoimmunity, as well as lymphopro-
liferation [12, 98, 100–102]. Necrotizing fasciitis is a 
rare, but severe and characteristic manifestation of the 
disease. In some rare cases, episodes of severe autoin-
flammation with increased production of IL-1 and TNF 
were observed [99].

In terms of immune phenotype, most mutation carri-
ers showed reduced switched memory B cells [98–100]. 
Interestingly, increased CD21low B cells may differentiate 
between symptomatic and asymptomatic carriers [98]. 
Immunoglobulin class-switching is regulated by NF-κB 
through various mechanisms [103], e.g., expression of 
the gene AICD (activation-induced cytidine deaminase) 
[97, 104], which may account for the decreased switched 
memory B cells and hypogammaglobulinemia (IgM, IgA, 
and/or IgG) in NF-κB haploinsufficiency. Even though the 
B cell defect is more pronounced, some patients present 
with chronic viral infection due to functional impairment 
of T cell immunity, including reduced effector memory 
and Th17 cells, as well as impaired proliferative response 
[99, 101]. Increased activation of the inflammasome and 
IL-1 secretion led to severe autoinflammation in some 
patients [99]. Possible pathophysiological mechanisms 
include reduced activity of the NF-κB-p62-mitophagy 
regulatory loop [105], decreased p50:p50 homodimers 
[106], and increased binding between NF-κB1 and IKKγ 
[99]. Regarding functional analysis of NFKB1 mutations, 
there are no simple screening assays. The p105 and/or 
p50 levels in transfected cells can be measured via West-
ern blot. Moreover, the mutant allele can be expressed 
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in a cell line and transcriptional activity measured via a 
NF-κB1-responsive reporter assay [100].

NFKB1 is a tumor suppressor gene, and NF-κB1 haplo-
insufficiency has been shown to promote tumorigenesis 
in murine models [107]. Malignancy (T and B cell lym-
phomas as well as solid tumors) also occurs in human 
NF-κB1 haploinsufficient patients at a median age of 
diagnosis of 46 years [100]. Age of onset and disease 
manifestations including cancer are highly variable even 
within the same family [12, 98], with clinical penetrance 
increasing in an age-dependent manner [100]. In a cohort 
of 121 affected patients, death occurred at a median age 
of 52 years [100].

Activated phosphoinositide 3‑kinase δ syndrome (APDS)
Class I phosphoinositide 3-kinases (PI3K) play an 
essential role in signal transduction through tyrosine 
kinase- and heterotrimeric G-protein-linked recep-
tors. In the family of class I kinases, PI3Kδ activity is 
restricted to leukocytes and activated through a vari-
ety of receptors, such as cytokine, growth factor, and 
antigen receptors [108, 109]. PI3Kδ consists of a cata-
lytic subunit (p110δ) and a regulatory subunit (p85α), 
which are encoded by the PIK3CD and PIK3R1 genes, 

respectively [109]. PI3Kδ is responsible for the genera-
tion of the second messenger molecule phosphatidylin-
ositol 3,4,5-trisphosphate  (PIP3) by phosphorylating 
its precursor phosphatidylinositol 4,5-bisphosphate 
 (PIP2). Downstream  PIP3 signaling is mediated by 
intracellular enzymes, such as the serine/threonine 
kinase AKT, which phosphorylates the FOXO tran-
scription factors inactivating them, as well as regula-
tors of the mTOR complex 1 (mTORC1), which is in 
turn activated [109].

Increased activity of the PI3Kδ pathway leads to 
an autosomal dominant primary immunodeficiency 
called APDS (Fig. 5). Two entities have been described: 
APDS1 due to heterozygous GOF mutations in the 
PIK3CD gene [8, 9] and APDS2 resulting from het-
erozygous LOF mutations in the PIK3R1 gene [10, 
11], which are phenotypically similar due to an over-
all increase in PI3Kδ activity (“gain-of-PI3Kδ-activity” 
mutations). Compared to other ALPID conditions, 
APDS has higher clinical penetrance and lower genetic 
heterogeneity [110]. Thus, more than 90% of APDS1 
patients carry the PIK3CD E1021K mutation. PIK3R1 
encodes the subunits p85α, p55α, and p50α as alterna-
tive splicing products; thus, loss-of-function mutations 

Fig. 4 Illustration of the NF-κB pathway. The NF-κB1 transcriptional factor (p50 and its precursor p105) is active upon dimerization (p50:p65) 
in the cytosol. At rest, NF-κB dimers are bound to inhibitory IκB proteins. After activation (here via PRR signaling), IκB proteins are phosphorylated 
by the IκB kinase (IKK) complex, which releases the NF-κB dimers. p65-containing heterodimers can then translocate into the nucleus and regulate 
gene expression. Heterozygous loss-of-function mutations in NFKB1 are associated with reduced protein levels of the p105 and/or p50 subunit 
and lead to the development of a complex immunodeficiency
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may cause different splice variants and consequently 
affect PI3Kδ signaling and disease phenotype [111].

A hallmark of APDS is recurrent respiratory tract 
infections as early as in the first year of life in almost all 
patients, as well as early-onset bronchiectasis (especially 
in APDS1) [110, 112–114]. Lymphadenopathy, hepato-
splenomegaly, and recurrent/chronic herpesvirus infec-
tions, as well as a variety of autoimmune manifestations 
such as cytopenia, glomerulonephritis, primary scleros-
ing cholangitis, or inflammatory bowel disease can be 
observed [8, 10, 11, 112, 113, 115]. Some non-immuno-
logic complications are developmental delay and growth 
impairment, particularly in APDS2 patients [112, 113]. 
The median age of onset is below 2 years of age [110].

Patients often have increased IgM and normal to 
decreased IgA and total IgG levels, which prior to the 
first description of APDS often led to the incorrect 
diagnosis of hyper IgM syndrome (HIGM) [116]. The 
observed hypogammaglobulinemia might be due to a 
PI3K-dependent B cell intrinsic defect (e.g., B cell survival 
[117]), extrinsic defect (e.g., increased AICD of T lym-
phocytes [8]), or a combination of both [11]. Moreover, 
increased PI3Kδ signaling has been shown to impair anti-
body maturation, since it actively suppresses class-switch 

recombination, e.g., through FOXO inactivation [118]. 
B cell counts in most patients are progressively decreas-
ing with an expansion of transitional B cells and reduc-
tion of class-switched B cells [112, 119]. In terms of T 
cell phenotype, CD4 T cell counts are reduced, espe-
cially CD45RA + T cells [112]. mTORC1 signaling has 
been shown to differentially regulate the development 
of T effector and regulatory cells [120], with overacti-
vation of the AKT/mTOR pathway leading to a burst in 
proliferation and accumulation of terminally differenti-
ated and senescent effector T cells including expansion 
of CD57 + CD8 + T cells by various mechanisms, such 
as a metabolic bias towards glycolysis [121, 122]. Sus-
ceptibility to herpes infection, especially EBV [112, 123], 
was shown to develop due to reduced cytotoxicity of the 
exhausted/senescent CD8 + T and the abnormally dif-
ferentiated NK cells [124, 125]. For functional testing, 
mutated p110δ or p85α can be expressed in a cell line 
and lipid kinase activity measured via a membrane cap-
ture assay [126]. A more common functional assay is the 
measurement of AKT and S6 phosphorylation, reflecting 
the activated PI3Kδ pathway [127].

Despite high phenotypic overlap, APDS1 patients more 
commonly present with bronchiectasis, splenomegaly, 

Fig. 5 Illustration of the PI3Kδ pathway. PI3Kδ is activated through a variety of receptors (shown here is activation via IL-2 and its associated 
receptor). PI3Kδ typically consists of a catalytic subunit (p110δ) and a regulatory subunit (p85α) and leads to the generation of phosphatidylinositol 
3,4,5-trisphosphate (PIP3) by phosphorylating its precursor phosphatidylinositol 4,5-bisphosphate (PIP2), both located in the cell membrane. 
Downstream PIP3 signaling is mediated by intracellular enzymes, such as the serine/threonine kinase AKT, which phosphorylates the FOXO 
transcription factors inactivating them, as well as regulators of the mTOR complex 1 (mTORC1), which is in turn activated. Increased activity 
of the PI3Kδ pathway leads to APDS. Patients with APDS are responsive to mTOR inhibition. More targeted approaches include selective PI3Kδ 
inhibitors, such as leniolisib or idealisib
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cytopenia, and skin disease, whereas APDS2 patients 
develop growth impairment and lymphoma more fre-
quently [110]. Ten to 15% of patients developed malig-
nant disease at a median age of 19 years, most commonly 
diffuse large B cell lymphoma (DLBCL) and classical 
Hodgkin lymphoma, with prior EBV infection posing 
a risk for malignant lymphoproliferation [110]. How-
ever, an even more important oncogenic driver is the 
increased PI3Kδ/AKT/mTOR signaling leading to B and 
T cell defects [128, 129]. In the largest cohort to date (the 
ESID APDS registry), death occurred at a median age of 
18.5 years [110].

Treating ALPID: basic concepts and targeted therapies
Most patients with ALPID benefit from conventional PID 
treatments. Since they often present with hypogamma-
globulinemia and/or respond poorly to vaccines, many 
are treated with immunoglobulin replacement therapy 
to correct for the secondary antibody deficiency [130]. 
If recurrent bacterial infections are present, this conven-
tional therapy is often supplemented with prophylactic 
antibiotics with the aim of reducing infection suscepti-
bility and secondary complications such as chronic lung 
inflammation and bronchiectasis.

Next to infection susceptibility, many inborn errors 
of immunity present with immune dysregulation [131]. 
The basic pillars of the treatment of autoimmunity and 
inflammation are steroids and other non-selective immu-
nosuppressants, such as mycophenolate mofetil (MMF), 
azathioprine, and cyclosporine. Monoclonal antibod-
ies (e.g., anti-TNF, anti-IL-17) are used for the treat-
ment of inflammatory bowel disease or inflammatory 
skin disease. The use of these substances usually follows 
the standard recommendations, but the increased infec-
tion susceptibility of ALPID patients has to be carefully 
considered.

In recent years, targeted therapies have become availa-
ble for several autoimmune-lymphoproliferative diseases. 
Rapamycin (sirolimus) is an mTOR inhibitor that can be 
considered a targeted therapy for ALPS patients [132]. 
mTOR inhibition targets DNT hyperproliferation and 
inappropriate survival of autoreactive B cells [133]. After 
the initial successful treatment of ALPS with rapamycin 
[134, 135], further studies could show rapid improve-
ment of non-malignant lymphoproliferation and auto-
immune cytopenia, which was mirrored in a decrease in 
DNT cells and ALPS biomarkers [133, 136]. Rapamycin 
is increasingly used as a first-line treatment for ALPS and 
shows amazing efficacy in this disease. It is often used as 
an immunosuppressive agent in CTLA-4 haploinsuffi-
ciency and LRBA deficiency where it can improve both 
lymphoproliferation and autoimmunity, especially enter-
opathy [70, 137].

Since mTOR signaling is activated downstream of 
PI3Kδ, patients with APDS also benefited from the use of 
rapamycin, especially in controlling benign lymphopro-
liferation. However, non-lymphoproliferative compli-
cations (cytopenia, enteropathy) are less responsive to 
mTOR inhibition [112–114, 138].

The development of selective PI3Kδ inhibitors, such 
as leniolisib or idealisib, allows for a specific inhibition 
of the hyperactive PI3Kδ pathway in APDS patients. A 
clinical trial of leniolisib (NCT02435173) or seletalisib 
(European Clinical Trials Database 2015–002900-10), 
oral inhibitors of the p110δ subunit, showed a decrease 
in lymphoproliferation and some improvement in auto-
immune complications (cytopenia) [127, 139, 140]. 
Treatment was well tolerated with very little side effects. 
Notably, the treatment also resulted in the normalization 
of several features of the abnormal immune phenotype, 
allowing to stop immunoglobulin substitution in some 
patients.

Targeted treatment is also available for patients with 
CTLA-4 haploinsufficiency or LRBA deficiency. The 
soluble CTLA-4 immunoglobulin fusion protein abata-
cept consisting of the Fc-region of human IgG1 linked to 
the extracellular domain of CTLA-4 can mimic CTLA-4 
function. It has been shown to successfully control lym-
phoproliferation and many autoimmune manifesta-
tions, such as cytopenia and enteropathy [70, 137, 141]. 
In a cohort of 123 CTLA-4 haploinsufficient patients, 
abatacept led to an improvement of interstitial lung dis-
ease and enteropathy with a response rate above 70% 
[137]. However, steroids continue to play an essential 
role in disease management and abatacept often needs 
to be combined with other immunosuppressive agents, 
especially if symptomatic lymphoid infiltrates are pre-
sent. Moreover, abatacept may lead to viral reactivation; 
therefore, EBV and CMV viremia should be routinely 
monitored [63]. Data on long-term disease control under 
abatacept are still lacking.

Although hyperactive STAT3 cannot be targeted 
directly, other molecules which are part of the STAT3 
pathway can be inhibited. Disruption of the IL-6/
IL-6R interaction upstream of STAT3 via the anti-IL-
6R monoclonal antibody tocilizumab was shown to 
partially improve autoimmunity [82, 85] by increasing 
FoxP3 + Treg cells [142]. However, small molecule inhibi-
tors of JAK activation (jakinibs such as ruxolitinib) lead 
to an even more impressive control of autoimmunity 
and immune dysregulation, especially if initiated early 
[85, 143]. Whether Jakinib therapy represents a life-long 
treatment concept for STAT3 GOF disease remains to be 
evaluated.

For ALPID patients, hematopoietic stem cell trans-
plantation (HSCT) is usually restricted to patients with 
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early onset of disease, severe disease manifestations of 
critical organs (lung, brain), and insufficient response 
to treatment, including targeted therapies. The hyperac-
tive signaling pathways, resulting in autoimmunity and 
hyperinflammation, frequently combined with persistent 
viral infections, poses a great challenge for successful 
stem cell transplantation [144]. Especially when con-
ventional treatments fail, HSCT is the only long-term 
curative therapy. There have been multiple retrospective 
studies showing an improvement in disease manifesta-
tions, e.g., in APDS [145, 146], CTLA-4 haploinsuffi-
cient [137], LRBA deficient [70], and STAT3 GOF [84, 
143] patients. In an initial cohort of 23 STAT3 GOF 
patients, overall survival was 62% [84]. Curative HSCT 
in patients with LRBA deficiency showed an overall sur-
vival rate of 70.8%, and all deaths could be attributed to 
a short-term transplant-related mortality [70]. Moreo-
ver, more than 2/3 (70.6%) of those patients required no 
further immunosuppressive therapy, which was in stark 
contrast to non-transplanted LRBA-deficient patients 
[70]. Similar results were reported regarding CTLA-4 
haploinsufficiency: 13 out of 18 transplanted patients 
(72.2%) remained disease-free with only one requiring 
IRT [137]. Overall survival in APDS1 and APDS2 was 
86% in a cohort of 57 patients, with poor graft perfor-
mance being the most common complication [146]. 
Based on these retrospective data, primary HSCT is a 
potentially curative treatment option in patients pre-
senting with an ALPID phenotype. However, additional 
data are needed to provide criteria for the selection of 
suitable patients and the right time point based on risk 
factor stratification.

Outlook: variable penetrance and somatic mutations
These examples illustrate the clinical and pathophysi-
ological overlaps and differences of selected ALPID dis-
eases. Even within a defined genetic condition, clinical 
heterogeneity makes diagnosis and management a chal-
lenge (Table  1). Moreover, many patients with similar 
clinical and immunological presentation remain without 
a genetic diagnosis, despite significant advances in next-
generation sequencing (NGS), particularly whole exome 
sequencing (WES) [147]. Several recent examples have 
shown that somatic mutations providing a proliferative 
advantage to lymphocytes can lead to complex ALPID 
phenotypes. Genetic analysis must pay particular atten-
tion to such non-mendelian constellations, which require 
deeper sequencing efforts than currently offered by 
exome or genome analysis.

Another fascinating research topic is the variable 
clinical penetrance of these mostly autosomal domi-
nant conditions. While some cases may be explained 
by second-hit somatic mutations leading to clinical 

manifestation of the disease, other factors that need to 
be considered are other genetic or epigenetic factors or 
environmental factors such as microbiota or metabolic 
cues. A better understanding of penetrance factors may 
result in prophylactic measures and will allow better 
discussion of prognosis for affected patients.

All figures were created via BioRender.
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