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Abstract 

Introduction Retinopathy of prematurity (ROP) is a vasoproliferative disorder of the premature retina with the poten-
tial to progress to extraretinal neovascularisation. This review serves as an introduction to retinopathy of prematurity 
(ROP), outlining key parts of ROP pathophysiology, diagnosis and treatment. ROP is traditionally diagnosed by indi-
rect ophthalmoscopy and classified using anatomical zones, stages of disease, and the presence or absence of “plus 
disease” (dilation and tortuosity of the major retinal arterioles and venules). ROP has a bi-phasic pathophysiology: 
initial hyperoxia causes reduced retinal vascularisation, followed by pathological vaso-proliferation resulting from sub-
sequent hypoxia and driven by vascular endothelial growth factor (VEGF).

Advancements in management This review summarises previous trials to establish optimum oxygen exposure 
levels in newborns and more recently the development of anti-VEGF agents locally delivered to block pathological 
neovascularisation, which is technically easier to administer and less destructive than laser treatment.

Future directions There remains an ongoing concern regarding the potential unwanted systemic effects of intravit-
really administered anti-VEGF on the overall development of the premature baby. Ongoing dosing studies may lessen 
these fears by identifying the minimally effective dose required to block extraretinal neovascularisation.
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Introduction
Preterm birth has a potentially wide-ranging impact on 
neurovascular development, including the neonatal ret-
ina. The incidence of premature birth is increasing glob-
ally and varies internationally (5–18% in some European 
and African states, respectively) [1]. Preterm survival is 
also increasing globally; this progress is more marked in 
countries with rapidly improving neonatal facilities [2] 
that are sufficiently developed to increase preterm sur-
vival, but insufficiently developed to reduce associated 
morbidity [3]. There is, therefore, an increasing number 

of preterm babies at risk of lifelong disability due to com-
plications associated with prematurity.

Retinopathy of prematurity (ROP) is a vasoprolifera-
tive disorder of the premature retina with the potential 
to progress to extraretinal neovascularisation. This can 
subsequently lead to retinal detachment and sight loss. 
A recent multicentre audit in the UK revealed that 4% of 
babies with a birth weight (BW) < 1500 g required treat-
ment for ROP [4]. The incidence of ROP in settings with 
less developed neonatal facilities is higher, since ROP can 
develop in babies of greater birth weight and gestational 
age (GA) in these settings [3, 5].

Prematurity and normal eye development
Retinal vascular development
The retina consists of organised layers of photoreceptors, 
interneurons, glial elements, and their various intercon-
nections, overlying the retinal pigment epithelial layer. The 
retina receives oxygen through a dual blood supply with 
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the outer layers receiving a supply from the choroidal layer 
and the inner retina predominantly receiving a supply 
from the retinal vasculature. Vascularisation of the retina 
starts in the second month of gestation from the optic disc 
and moves peripherally behind a “wave of neuronal dif-
ferentiation” and consequent increasing metabolic activ-
ity [6], reaching the nasal side in the eighth month and the 
temporal side at approximately the time of term delivery.

The role of oxygen in the pathogenesis of ROP
In utero, the partial pressure of oxygen  (PO2) in the 
umbilical vein is less than 50  mmHg [7]. Thus, retinal 
vasculature develops in a controlled, relatively hypoxic 
environment. Following delivery, arterial  PO2 rises; neo-
nates given supplementary oxygen may be exposed to 
yet higher, more fluctuating levels of oxygen. Crosse and 
Jameson observed in 1952 that the incidence of ROP 
in neonates rose and fell with the liberal and restricted 
administration of oxygen, respectively [8]. The ELGAN 
study corroborates that such hyperoxia on blood gases 
contributes to the development of ROP [9]. Blood 
transfusion containing adult haemoglobin may further 
increase oxygen availability in developing structures 
due to the different oxygen affinities of foetal and adult 
haemoglobin [10]. The preterm retina is particularly 
vulnerable to hyperoxia for two reasons: the immature 
vasculature has a reduced ability to autoregulate [11], and 
the reserve of antioxidants is not large enough to protect 
from damage by reactive oxygen species [12] due to pre-
vention of full transfer of ̟-long-chain polyunsaturated 
fatty acids (LCPUFAs) from mother to baby in the third 
trimester [13]. Limited data from clinical trials indi-
cate the potential for supplementation of LCPUFAs in 
the early post-natal period may reduce the incidence of 
severe ROP [14–16].

Levels of insulin‑like growth factor‑1 (IGF‑1) in the premature 
neonate
Reduced concentrations of IGF-1, seen in preterm neo-
nates [17], is a key contributor to ROP development due 
to its synergistic action with VEGF where angiogenesis 
occurs only when IGF-1 reaches a critical level [18]. The 
deficit in IGF-1 means that vitreoretinal VEGF levels 
continue to build until IGF-1 reaches the critical level to 
support angiogenesis. The supranormal levels of VEGF 
then result in extraretinal neovascularisation [19]. The 
possibility that supplemental IGF-1 given from 24 h of 
birth until reaching 30 weeks postmenstrual age (PMA) 
might prevent severe ROP was tested in a clinical trial 
with intravenous infusions of supplemental recombinant 
human IGF-1 combined with recombinant human IGF-1 
binding protein. Unfortunately, no reduction in severe 
ROP was observed in the treatment arm compared to the 

control arm although there was a reduced incidence of 
bronchopulmonary dysplasia in the treatment arm. Fur-
ther studies are required to clarify the potential of IGF-1 
[20].

Risk factors
Understanding retinal development in the context of 
prematurity provides an explanation for the risk factors 
associated with ROP: gestational age, birth weight, post-
natal weight gain and nutrition linked to IGF-1 [21] and 
oxygen exposure [9]. Therefore, ROP may feature along-
side other conditions associated with disrupted vascular 
development or abnormal fluctuations in oxygen satura-
tion such as poor brain growth, bronchopulmonary dys-
plasia and necrotising enterocolitis.

Dysregulation of blood vessel development due to 
infection or inflammation, such as chorioamnionitis, 
may also form a “prephase” of ROP [22]. It is unknown 
whether intra-uterine events that may cause preterm 
delivery predispose to the development of ROP. Higher 
incidence in males and Caucasian babies suggests there 
may also be a genetic predisposition as implied by ethnic 
variations in incidence of severe ROP [23].

Pathogenesis
Retinopathy of prematurity can be thought of in two 
phases: the cessation of normal vascular development 
in high-oxygen environments, followed by pathological 
compensatory vascularisation of the retina [24].

Phase one (hyperoxia)
In addition to decreased levels of IGF-1 and mater-
nal ω-LCPUFAs, exposure of the premature retina to 
increased oxygen causes further dysregulation of vascu-
lar development by suppression of hypoxia-induced fac-
tors (HIFs) which reduces levels of angiogenic factors 
such as vascular endothelial growth factor (VEGF) and 
erythropoietin (EPO) [25]. In extreme cases, an oxygen-
induced retinopathy has been demonstrated in pre-term 
babies (≥ 28 weeks and ≥ 1000 g) given unmonitored and 
unblended 100% oxygen for 3 days or longer after birth 
[26].

Phase two (hypoxia)
As the retina develops, its metabolic demand increases 
such that the environment becomes hypoxic. In hypoxic 
conditions, the breakdown of HIFs is reduced [27, 28]. 
HIFs upregulate the expression of VEGF which acts 
via specific receptors (VEGFR-1 and VEGFR-2) [29] to 
cause increased migration, proliferation and perme-
ability of endothelial cells. In ROP, this process becomes 
pathological due to the excessive amounts of VEGF in 
the absence of sufficient IGF-1 to support angiogenesis. 
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Once IGF-1 reaches sufficient levels, the excess VEGF 
causes extraretinal neovascularisation which subse-
quently undergoes cicatrisation. This cicatricial process is 
accompanied by contracture of fibrous metaplastic tissue 
which, if extensive enough, can lead to a tractional retinal 
detachment [18, 30, 31]. Whilst the role of EPO in ROP 
is not well elucidated, excessive concentrations of EPO in 
the vitreous have also been correlated with levels of vitre-
ous VEGF and partial retinal detachment [32].

Timing of phase transition
The transition from phase 1 to phase 2 has a significant 
bearing on the timing of initiation for screening of ROP, 
the purpose of which is to identify sight-threatening ROP 
before it becomes untreatable. Whilst this is not precisely 
known in any given premature baby, we know from natu-
ral history studies that there is a close association of ROP 
development to post-menstrual age [33]. In babies born 
before 27  weeks of gestation, the earliest onset of stage 
3 ROP is not earlier than 31  weeks, and therefore, this 
can be used as a guide to initiate screening in the most 
premature neonates [34]. Figure 1 shows a summary dia-
gram of the progression of ROP (Fig. 1).

Diagnosis and classification
ROP is traditionally diagnosed by indirect ophthalmos-
copy but, more recently, is increasingly being identified 
through digital retinal imaging [35]. ROP is classified 
using the International Classification of ROP (ICROP3) 
standards [36] which denote ROP in terms of zones, 
stages, clock hours (extent) and “plus disease”. The 

retina is divided into three concentric zones (Fig. 2). The 
stages are defined by the appearance of the retinal vas-
culature at the junction of the vascularised retina with 
the non-vascularised retina. Initially, this may appear as 
just incomplete vascularisation (immature vascularisa-
tion), previously termed stage 0. Stage 1 represents a 
pale demarcation line at the junction between vascular-
ised and avascular retina, stage 2 represents an elevation 
of the demarcation line (ridge) and stage 3 represents 
the development of extraretinal neovascularisation. 
Small angioblastic buds, termed “popcorn”, may appear 
above the stage 2 ridge presaging the development of 
stage 3. Changes in the appearance of the blood vessels 
at the posterior pole within zone I may be noted during 
the progression of ROP with gradually increasing vessel 
dilation and tortuosity of the major arterioles and ven-
ules, termed “plus disease”. This is a significant driver 
for treatment for ROP and is therefore a critical feature. 
There is a gradation in the progression of vessel tortuos-
ity and dilation from the absence of plus disease to plus 
disease with intermediate levels being termed “pre-plus”. 
Distinguishing plus disease from pre-plus is often a mat-
ter of judgement and there is considerable subjectivity 
and, consequently, interobserver variation, but is likely 
to be aided in the future with the use of artificial intel-
ligence algorithms [37]. However, it is possible that the 
apparent size and shape of vessels become distorted by 
the pressure change associated with using contact wide-
angle retinal imaging camera lenses [38]. Stage 3 ROP in 
the presence of plus disease forms a fibrovascular com-
plex that may progress to a tractional retinal detachment. 

Fig. 1 The 2-phase model of ROP. Diagrams shown below the timeline are cartoons of retinal flat mounts, similar to those seen in rat and mouse 
model



Page 4 of 11Woods and Biswas  Molecular and Cellular Pediatrics           (2023) 10:12 

Where there is a partial detachment, this is termed stage 
4: if not involving the macula, this is stage 4a and if 
involving the macula, this is stage 4b. Stage 5 denotes a 
total detachment of the retina and is further subdivided 
into stage 5a (total retinal detachment); stage 5b (total 
detachment of the retina with a closed funnel configu-
ration); stage 5c (accompanying changes to the anterior 
segment of the eye such as cataract, glaucoma and cor-
neal opacity). Stages 4 and 5 are typically associated with 
poor visual outcomes and blindness.

Implications for management
As ROP has two phases, there is a lag phase from birth to 
the development of the ROP lesion. A balance therefore 
needs to be struck between screening unnecessarily early 
and commencing in a timely way in order to identify pre-
term infants at risk of sight-threatening ROP. UK guide-
lines recommend that eye examinations are not carried 
out before 31 weeks PMA [39], due to observational stud-
ies showing that severe ROP is not seen before this point 
[34]. Accurate classification of ROP is not only important 
for identifying babies that require treatment, but is also 

for identifying infants that are at higher risk of progres-
sion and therefore requiring more frequent monitoring 
intervals. Table 1 shows how zone, stage and the presence 
of plus disease inform types of ROP. Treatment-war-
ranted ROP is termed “type 1”. “Type 2” ROP represents 
ROP status that requires careful monitoring, on a weekly 
basis. Babies that have immature vascularisation only in 
anterior zone II, stage 1 in anterior zone II or stage 2 in 
anterior zone II without any plus or pre-plus disease are 
all deemed to be lower risk and may be monitored at two 
weekly intervals. Immature vascularisation terminating 
in zone I or posterior zone II; or stage 1 or 2 ROP in zone 
I or posterior zone II or stage 3 ROP in Zone II (type 2 
ROP); the presence of any pre-plus disease, all increase 
the risk of progression and would necessitate more fre-
quent, weekly monitoring [39].

Aggressive ROP (A-ROP) is a rare but severe form 
of ROP. This typically develops in zone I or posterior 
zone II, but may be located in more anterior zones in 
some parts of the world with limited resources avail-
able for optimal neonatal care. The hallmark of A-ROP 
is the marked prominence of plus disease typically in all 

Fig. 2 Zones of the right eye and appearance of retinal vasculature according to ROP stage. Zone I, the most posterior, is a circular zone centred 
on the optic nerve and with a radius twice the distance (2x) from the centre of the optic nerve to the centre of the macula (x). Zone II represents 
a middle zone, concentric to zone I, extending from the border of zone I to the nasal ora serrata (furthest extent of the nasal retina). Zone II is itself 
subdivided into a posterior zone II, two disc diameters out from the border of zone I, and anterior zone II encompassing the remaining peripheral 
area of zone II. Zone III is the most peripheral zone extending from the temporal border of zone II and capturing a remaining temporal crescentic 
area beyond zone II. ROP is likely to be more severe when located in zone I or posterior zone II. Stages 1–3 can occur in any zone of the eye. Here, 
they are shown in zone II for clarity
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4 retinal quadrants of the eye with a poorly defined, flat 
neovascularisation not associated with a demarcation 
line or ridge.

Prevention and treatment
Oxygen management
Between 1994 and 2014, large, multi-centre randomised 
control trials (RCTs)—STOP-ROP [40], SUPPORT [41], 
BOOST II [42], and COT [43]—have been conducted 
across developed countries. Table 2 compares these stud-
ies (Table 2).

Collectively, these studies demonstrate the balance of 
supplementary oxygen: higher oxygen saturation targets 
are associated with ROP and bronchopulmonary dyspla-
sia, whereas a lower target is associated with higher rates 
of neurological damage, necrotising enterocolitis and 
death, which caused early termination of the BOOST II 
trial. Currently, UK guidelines recommend a target oxy-
gen saturation of 91–95% [44]. The 2-phase model of the 
pathogenesis of ROP may suggest that there is no sin-
gle target  SaO2. Rather, when considering ROP in isola-
tion, target  SaO2 should ideally change over time as the 
disease moves from its hyperoxic to the hypoxic stage. 
However, this should be carefully balanced against the 
systemic implications of changing oxygen saturations and 
practical challenges of implementation.

Pharmacological approaches
Currently, there are two dominant modalities for the 
treatment of ROP, (1) intravitreal injection of anti-VEGF 
antibodies and/or (2)  laser ablation of the avascular 
retina. Laser therapy requires prolonged sedation and, 
even when initiated early as in the Early Treatment of 
ROP (ETROP) study, cannot prevent retinal detachment 
in 12% of cases [45]. Thus, increasing focus has been 
given to a pharmacological approach which would have 
the benefit of bedside administration, reduced cost and 
would reduce the burden on specialist ophthalmologists 
experienced in delivering laser treatments [46].

The antibody bevacizumab binds to all forms of VEGF-
A [47]. Intravitreal injection of bevacizumab has been 
widely used in other vasoproliferative ocular diseases 
such as age-related macular degeneration, diabetic retin-
opathy, central and branch retinal vein occlusion in adult 
patients [48–51]. In addition, intravitreal bevacizumab 
has been used in children for conditions such as Coats 
disease and subretinal neovascular membranes. However, 
its use in all ocular diseases in both adults and children is 
off-label. Study data shows that, in the UK, Bevacizumab 
is used by some ophthalmologists to treat A-ROP and 
posterior type-1 ROP [4].

BEAT-ROP, a multicentre RCT, compared the efficacy 
of bevacizumab against standard laser treatment, using 
recurrence of ROP before 54 weeks postmenstrual age as 
a primary outcome [52]. The authors concluded that the 
anti-VEGF agent was shown to be effective against stage 
3 + disease in zone I, but not in zone II and larger num-
bers of participants were required to comment on safety. 
However, these conclusions have been questioned, since 
using recurrence at 54 weeks as a primary outcome may 
miss later reactivation of ROP giving a false impression of 
bevacizumab’s efficacy [53]. The figure of 54  weeks was 
based on the recurrence of ROP following laser treat-
ment for ROP from the ETROP study but does not take 
into account the possibility of late reactivation of ROP 
that is seen in babies treated with anti-VEGF (see below).

A Cochrane Review [54] of anti-VEGF agents for the 
treatment of ROP included four RCTs (including BEAT-
ROP) comparing bevacizumab with laser therapy. The 
authors concluded that aggregated data suggest beva-
cizumab as monotherapy does not reduce recurrence 
or risk of retinal detachment (although, as suggested by 
BEAT-ROP, treatment for zone I ROP is promising).

Safety concerns have been raised by clinicians regard-
ing the use of anti-VEGF in this age group [53, 55]. Stud-
ies in humans show that bevacizumab, when injected 
intra-ocularly, can escape into the general circulation 
[56]. Furthermore, primate models demonstrate that the 
serum concentration of bevacizumab remains raised for 

Table 1 Using stage, zone, and presence of “plus disease” to classify ROP into type 1 and type 2

⊕ Plus disease

⊖ No plus disease

Zone I Zone II Zone III

Stage 1 ⊕ = Type 1 ⊖ = Type 2 Examination intervals based on plus /pre-plus 
disease status

Examination intervals based 
on plus / pre-plus disease 
status

Stage 2 ⊕ = Type 1 ⊖ = Type 2 ⊕ = Type 1 Examination intervals 
based on pre-plus 
disease status

Examination intervals based 
on plus / pre-plus disease 
status

Stage 3 ⊕ = Type 1 ⊖ = Type 1 ⊕ = Type 1 ⊖ = Type 2 Examination intervals based 
on plus / pre-plus disease 
status
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up to 8  weeks [57]. The 2018 Cochrane review [54] of 
anti-VEFG agents concluded that insufficient safety data 
existed for the recommendation for routine use of beva-
cizumab. Roohipoor et al. [58] recruited 116 participants, 
randomised to 0.625  mg bevacizumab or laser therapy. 
The study found that ROP regressed in all cases of the 
bevacizumab arm (5 eyes—3.2%—requiring retreat-
ment at a mean of 6.01 weeks after initial treatment) and 
97.3% of eyes in the laser therapy arm (p = 0.20). Despite 
follow-up to 90  weeks, only ocular complications were 
recorded in the bevacizumab arm (one instance of cata-
ract formation).

The dose of bevacizumab used in Roohipoor’s and the 
BEAT-ROP study was 0.625  mg, half of the adult dose. 
However, this may be significantly more than required 
to neutralise VEGF in the vitreous. Further studies look-
ing at lower doses of Bevacizumab ranging from 0.16 
to 0.004  mg have shown promising outcomes [59, 60], 
although there is a likelihood of reactivation occurring 
sooner with lower doses [61].

An alternative anti-VEGF antibody, Ranibizumab, a 
human monoclonal antibody fragment derived from the 
parent antibody Bevacizumab [47] has been licenced 
and approved for treatment of retinal vasoproliferative 
disorders in adults and also for ROP by the National 
Health Service (NHS England) [62] and European Medi-
cines Agency (EMA) [63] following completion of the 
RAINBOW trial [64]—225 participants, randomized to 
ranibizumab 0.2 mg, ranibizumab 0.1 mg, and laser pho-
tocoagulation therapy. Analysis showed that ranibizumab 
0.2 mg may be superior to laser therapy (treatment suc-
cess odds ratio compared to laser therapy = 2.19. 95% CI 
0.99–4.82). Stahl et  al. record that “Death, serious and 
non-serious systemic adverse events, and ocular adverse 
events were evenly distributed between the three groups” 
at 24  weeks [64]. One notable advantage that Ranibi-
zumab may have over Bevacizumab is the reduced dura-
tion of systemic VEGF suppression [56, 65, 66].

Longer-term follow-up from the CARE-ROP study [67] 
which compared different doses of ranibizumab (0.2 mg 
and 0.12 mg) shows no significant difference in ophthal-
mic and neurodevelopmental outcomes between the 
treatment arms after 1 and 2 years, respectively.

A third agent, Aflibercept, has the potential to prevent 
VEGF-driven pathogenesis by binding VEGF-A, VEGF-B 
as a soluble decoy receptor [68]. Aflibercept is licensed 
for use in adult retinal vasoproliferative disorders by the 
US Food and Drug Administration FDA [69] and EMA 
[70]. The FIREFLEYE study tested Aflibercept in a mul-
ticentre, international non-inferiority RCT for treatment 
of type 1 ROP and A-ROP with an active control compar-
ator group of babies treated with laser therapy [71]. As 
with the RAINBOW study, the primary outcome was the 

proportion of infants without active ROP and unfavora-
ble structural outcomes (retinal detachment, macular 
dragging, macular fold or retrolental opacity) 24  weeks 
after starting treatment. One hundred eighteen infants 
were randomized, and 113 were treated in a 2:1 ratio 
of Aflbercept (0.4  mg) (75 babies) or laser (38 babies). 
Although treatment success was slightly higher in the 
Aflibercept-treated arm, the credible interval for the 
treatment difference was not greater than the prespeci-
fied value of − 5% and therefore non-inferiority could not 
be proven. Further and larger studies of Aflibercept are 
therefore required to reach any definitive conclusions 
regarding the comparative effect of Aflibercept to laser in 
type 1 ROP.

ROP regression following anti-VEGF is a notable for its 
rapidity. The RAINBOW study documented plus disease 
regressing significantly faster, at a median time of 4 days 
(interquartile range (IQR) of 3–8 days) following 0.2 mg 
of Ranibizumab compared to a median time of 16  days 
(IQR of 9–22 days) following laser. Similarly, stage 3 was 
noted to regress at a median of 8 days (IQR 5–17 days) 
following 0.2  mg of Ranibizumab versus a median of 
16 days (IQR 9–29 days) following laser. Indeed, A-ROP 
was noted to take nearly 3 times longer to regress follow-
ing laser treatment versus Ranibizumab [72]. This study 
also showed that incomplete regression of ROP requir-
ing retreatment was more frequently observed in laser-
treated eyes with around 22% of eyes requiring further 
treatment at a median interval of 15 days post-laser com-
pared to 8% of Ranibizumab-treated eyes at a median 
interval of 21 days after injection [72].

Significant concerns around treatment with anti-VEGF 
include the prolonged follow-up required to identify re-
activation of the disease, that is, a recurrence of acute 
phase features of ROP, and the management of any per-
sistent avascular retina in the periphery, which arises 
from interruption of vascular development following 
intravitreal anti-VEGF administration. Reactivation may 
occur after complete or incomplete regression of ROP 
after anti-VEGF injections. It rarely occurs after com-
plete regression of ROP following laser treatment. Reac-
tivation following anti-VEGF treatment may involve, at 
its mildest, the recurrence of stage 1 demarcation line or 
more severe features such as stage 3 and/or plus disease. 
The natural history of such reactivations may not follow 
through the typical stages of ROP either and may just 
show features of plus disease associated with fine neovas-
cularisation [34]. Such reactivation has been described 
more than 12  months after treatment with anti-VEGF 
(Bevacizumab) [73]. In the RAINBOW study, 31% of 
infants receiving 0.2 mg of intravitreal Ranibizumab had 
one or more additional treatments during their follow-up 
with a median time to first retreatment of 55 days (range 
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29–111 days) [64]. Ranibizumab may be associated with 
more rapid reactivation than bevacizumab or aflibercept 
[74]. Reactivation of ROP following intravitreal anti-
VEGF injection may also be seen more in more poste-
rior aggressive diseases or in those injected at a younger 
post-menstrual age [75]. Very low-dose bevacizumab 
for treatment of ROP, ranging from 0.002 to 0.016 mg, is 
also associated with earlier reactivations with a mean of 
76.4  days to reactivation compared to low-dose bevaci-
zumab, ranging from 0.031 to 0.25  mg, with a mean of 
85.7 days to reactivation [61].

Babies treated with anti-VEGF may never fully vas-
cularise to the peripheral retina leaving a persistent 
area of avascular retina (PAR) that runs the risk of late 
reactivation of ROP. This potential for late reactivation 
in a persistent avascular zone leaves a number of man-
agement dilemmas. PAR occurs in untreated, sponta-
neously regressed ROP as well as in ROP treated with 
anti-VEGF. Long-term pathological changes within the 
PAR observed in adult patients with a history of ROP that 
never reached treatment criteria include atrophic reti-
nal holes, retinal tears, both of which can lead to retinal 
detachment, tractional retinoschisis (splitting of the reti-
nal layers), vascular anomalies including telangiectatic 
vessels, vascular leakage and neovascularisation [76]. 
Similarly fundus fluorescein angiography studies carried 
out in eyes treated with a history of anti-VEGF injec-
tions with PAR demonstrate vascular anomalies such as 
vascular leakage, shunts, abnormal vessel branching and 
tangles [77]. There is no consensus regarding the man-
agement of such cases in terms of treatment or follow-
up regimes. Additionally, in the short to medium term, to 
continue to undertake regular, serial ROP examinations 
require parents or guardians to return with their baby 
for ongoing retinal examinations that may pose practical 
difficulties, particularly if they have to travel a significant 
distance. Furthermore, the examinations become increas-
ingly stressful and difficult to carry out in infants with 
increasing age. Further research is required to answer the 
questions of whether and when to treat or not.

Conclusion
ROP is a significant concern in preterm infants and pro-
gression to severe disease has a poor visual prognosis. Its 
pathogenesis can be understood in the context of prema-
ture transition from intra- to extra-uterine environments 
and consequent disruption to oxygen availability in the 
retina which dictates vascular development via signalling 
molecules. When considering ROP in isolation, reduc-
ing oxygen availability in the retina may help to control 
this process. However, the implications of this on other 

developing structures such as the brain and gastrointesti-
nal tract and higher mortality are unacceptable.

Other significant research questions include refining 
the criteria for identifying babies at risk of serious ROP. 
The relationship of IGF-1, post-natal weight gain and 
severe ROP is well established [78] and has encouraged 
the development of a number of algorithms based on GA, 
BWT and weight gain and ethnicity [79, 80]. Implemen-
tation of refined and validated screening algorithms may 
reduce the overall burden of screening.

The increasing uptake of digital retinal imaging and 
subsequent capability of image analysis also lends itself 
to the development of artificial intelligence and deep 
learning algorithms to assist clinicians in identifying 
critical features of ROP, such as plus disease versus 
no plus or pre-plus disease, vascular severity scores or 
stage of ROP. Many are showing promise but as yet are 
not reliable enough to entirely replace the experienced 
clinician [81].

Interventions such as laser ablation of the avascular 
retina persist, but more recently anti-VEGF agents offer 
a more targeted approach. Future optimal dosage stud-
ies may eradicate long-term wider safety fears and elu-
cidate optimum dosages or therapeutic agents specific 
to the stage and zone of ROP. Further studies may also 
address the problem of management of the peripheral 
avascular retina following anti-VEGF treatment. Going 
forward, alternative ways of targeting VEGF, such as 
the use of the beta-blocker, propranolol [82] and the 
targeting of other pathological pathways that lead to 
ROP, such as LCPUFAs and IGF-1 may warrant further 
investigation.
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