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Abstract 

Background Asthma is an inflammatory lung disease that constitutes the most common noncommunicable chronic 
disease in childhood. Childhood asthma shows large heterogeneity regarding onset of disease, symptoms, severity, 
prognosis, and response to therapy.

Main body Evidence suggests that this variability is due to distinct pathophysiological mechanisms, which has led 
to an exhaustive research effort to understand and characterize these distinct entities currently designated as “endo-
types.” Initially, studies focused on identifying specific groups using clinical variables yielding different “clinical phe-
notypes.” In addition, the identification of specific patterns based on inflammatory cell counts and cytokine data 
has resulted in “inflammatory endotypes.” More recently, an increasing number of molecular data from high-through-
put technology (“omics” data) have allowed to investigate more complex “molecular endotypes.”

Conclusion A better definition and comprehension of childhood asthma heterogeneity is key for improving diagno-
sis and treatment. This review aims at summarizing the current knowledge on this topic and discusses some limita-
tions in their application as well as recommendations for future studies.

Keywords Childhood asthma, Asthma, Phenotypes, Endotypes

Background
Asthma is the most common inflammatory disease of 
the airways in childhood being characterized by cough, 
wheeze, and shortness of breath. Scientific evidence indi-
cates that asthma is a heterogeneous disease encompass-
ing different pathophysiological mechanisms [1]. This has 
led to the imperative task of identifying and describing 
the molecular mechanisms underlying this heterogeneity. 
A better understanding of these mechanisms will result 
in a more precise definition of asthma, a better charac-
terization of specific risk factors, and a more accurate 
identification of individuals with poor prognosis [2]. 
It will also set the grounds for a “personalized” therapy 

approach, thus alleviating the needs of individuals who 
do not respond well to therapy and reducing the bur-
den of current therapy side effects [3]. Initially, research 
efforts to understand this heterogeneity focused on 
adults due to the medical need of a large population, ethi-
cal considerations in children, and sample accessibility 
[4]. However, it became clear that children with asthma 
differ in many aspects from their adult counterparts, 
highlighting the importance of investigating this age 
group separately [4–6]. This has resulted in many studies 
aiming at disentangling this heterogeneity using different 
and novel strategies [7–14]. This review provides a brief 
overview of different factors that contribute to asthma 
heterogeneity, defines concepts, and includes respective 
studies on “phenotypes “ and “endotypes.” Finally, current 
limitations, open questions, and future perspectives in 
relation to asthma heterogeneity are discussed.
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Heterogeneity in childhood asthma
Factors and challenges
Based on differences in the onset and progression of the 
disease, the severity of symptoms, frequency of exacer-
bations, inflammatory profiles, and response to therapy, 
childhood asthma is considered a heterogeneous dis-
ease [15]. Early on, physicians recognized this variabil-
ity, where one example constituted the “extrinsic” and 
“intrinsic” asthma phenotypes described by Rackeman in 
1947 [16]. Since then, our understanding of asthma het-
erogeneity has increased, leading to the classification of 
asthma as a syndrome [1, 17].

The heterogeneity in childhood asthma is due to different  
pathological mechanisms originating from the complex 
interplay between genetic, epigenetic, and environmental 
factors [18, 19]. Two recently published reviews describe 
early-life exposures and their interactions with genetic 
factors in childhood asthma [19, 20]. These factors can 
increase the risk of incidence and severity as air pollution 
exposure or decrease it like growing up on a farm [21, 22]. 
In addition, the environment can also influence the preva-
lence of subtypes of asthma. Krautenbacher and colleagues 
reported that genetics has a strong influence on asthma 
among farm children, while among non-farm rural children, 
the environment is the stronger determinant [23].

Genetics also plays an important role in childhood 
asthma, where family history of asthma remains one of 
the most important risk factors [24, 25]. Noteworthy 
is the 17q12-21 locus, which has been replicated sev-
eral times and is associated with early-onset asthma in 
childhood [26, 27]. Finally, different epigenetic mecha-
nisms associated with childhood asthma have been 
identified, where methylation and acetylation are the 
best described [28]. Also, evidence of the importance 
of different noncoding RNA populations (e.g., long 
noncoding (lnc) RNA, micro (mi)RNA) in asthma has 
started to amount [29].

The inherent challenges of understanding heteroge-
neity in complex diseases are increased in childhood 
asthma due to differences in epidemiological definitions 
and a casual use of asthma severity and control classifi-
cations [30]. Van Wonderen and colleagues highlighted 
this issue by analyzing 122 cohorts and reporting 60 
different asthma definitions, which affected incidence, 
morbidity, and prevalence estimates [31]. In addition, 
the current definitions of asthma have their limits for a 
proper diagnosis in preschool children, given that many 
include objectively measured outcomes that cannot be 
performed in this age group. This topic has been recently 
reviewed by Conrad and colleagues [32]. Thus, a more 
precise and comprehensive definition of asthma address-
ing these limitations would facilitate our efforts to under-
stand its heterogeneity.

Description of heterogeneity
Different approaches have been used to disentangle 
asthma heterogeneity, resulting in multiple phenotypes 
and endotypes. Phenotypes can be defined as a clus-
ter or group that shares visible or measurable proper-
ties like demographic variables, symptom frequency, or 
physiological properties, whereas an endotype describes 
a specific biological mechanism which explains the dis-
ease [33]. Primarily, two different methods are used for 
their characterization: (i) hypothesis-driven approaches 
and (ii) supervised, unsupervised, and model-based 
clustering methods (data driven). Hypothesis-driven 
approaches mostly consist of analyzing one or two dif-
ferent traits using clinically relevant cutoffs. On the other 
hand, supervised and unsupervised clustering methods 
usually integrate large amount of data using a data-driven  
approach to identify specific patterns [4]. Depending on 
the variables used, different phenotypes and endotypes 
have been identified. These can be broadly classified  
as clinical phenotypes, inflammatory endotypes, and 
molecular (“omic” based) endotypes (Fig. 1). The following  
sections summarize studies describing these phenotypes 
and endotypes.

Clinical phenotypes
Clinical phenotypes related to childhood asthma depend 
on the variables and methods used for identification, as 
well as the aim of the study. Pijnenburg and colleagues 
defined four domains where these phenotypes are most 
useful in clinical practice. These include diagnosis, patho-
physiology, prediction, and response to therapy [20]. 
Many studies have identified clinical phenotypes in pre-
school wheezing children and school-age asthmatic chil-
dren [11, 34, 35]. Children defined as preschool wheezer 
present with pulmonary symptoms such as wheeze with 
differences in time of onset, frequency, duration, and 
severity of symptoms. They cannot perform lung func-
tion tests due to their young age [32]. Yet, wheezing 
constitutes one of the most significant risk factors for a 
diagnosis of childhood asthma [36]. Importantly, the two 
terms preschool wheezing and childhood asthma are dis-
tinct with only partial overlap and thus require thorough 
definition in order to classify phenotype groups correctly.

Clinical wheeze and asthma phenotypes
The assessment of triggers and the persistence of wheez-
ing symptoms have resulted in two phenotypes among 
preschool wheezing children [37]. One is the episodic 
viral wheeze (EVW) phenotype that is characterized by 
wheezing symptoms only during viral infections and no 
symptoms in between. The other one is the multi-trigger 
wheeze (MTW) phenotype, which presents with wheez-
ing symptoms during viral infections but also in response 
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to different factors like allergens or exercise [37]. The 
EVW phenotype is more frequent in infancy and tends 
to become asymptomatic later in life. On the other hand, 
the MTW phenotype is strongly associated with lung 
function deficits and is more likely to persist into school 
age [13, 35]. While a recent study demonstrated the sta-
bility of these phenotypes, highlighting their value in the 
clinical setting, physicians have also scrutinized the use-
fulness of these phenotypes [13, 38, 39].

Among asthmatic children, two phenotypes have been 
identified based on the presence of atopy. Allergic asthma 
is characterized by allergen sensitization (specific IgE) 
and the presence of atopic diseases (e.g., atopic dermati-
tis, allergic rhinitis). Nonallergic asthma shows no aller-
gic sensitization nor additional atopic diseases [11, 40]. 
Allergic asthma is far more common in childhood, being 
strongly associated with eosinophilic inflammation and 
type 2 (T2) biomarkers. Most of these children tend to 
respond well to inhaled corticosteroids (ICS) [41].

Phenotypes related to prediction
Prediction of asthma diagnosis in children is clinically 
relevant, and the description of longitudinal patterns of 
asthma-related traits results in phenotypes with differ-
ent predictive values for asthma diagnosis. Sensitization 
is a key feature of allergic asthma, but the mechanisms 

underlying this relationship remain unclear. Recent stud-
ies investigated longitudinal trajectories of this trait and 
assessed their risk for an asthma diagnosis [9, 42, 43]. 
One common observation was that infants in early life 
(< 1  year) were rarely sensitized, indicating little pre-
dictive value of sensitization data at this time point. In 
addition, persistent sensitization to house dust mite was 
associated with an increased risk of asthma later in life 
[42, 43]. Hose and colleagues also described a trajectory 
characterized by high values of specific IgE to multiple 
allergens in two independent cohorts with an increased 
risk of developing asthma [9].

The temporal trajectories of wheeze symptoms have 
also been investigated using hypothesis-driven or latent 
class analysis (LCA) methods. These studies consist-
ently describe four distinct trajectories (never or infre-
quent wheeze, early onset wheeze, late-onset wheeze, and 
recurrent wheeze). In addition, studies using LCA algo-
rithms report a fifth intermediate trajectory. Children 
following the late onset or the recurrent wheezing trajec-
tories have an increased risk for lung function abnormali-
ties and asthma diagnosis [34, 36, 44].

Phenotypes related to therapy response
Current treatment guidelines, such as the Global Ini-
tiative for Asthma (GINA), are based on the use of 

Fig. 1 Overview on data used to define different phenotypes and endotypes. Heterogeneous asthmatic children are depicted on the top 
of the figure. Data type level specifies which kind of data must at least be present to identify specific groups resulting in clinical phenotypes, 
inflammatory endotypes, and molecular endotypes
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ICS; however, specific clinical sub-phenotypes are not 
included [45]. Although these guidelines have proven 
effective in controlling asthma symptoms, a subgroup 
of children are still symptomatic. Two distinct groups 
are particularly important based on their disease sever-
ity: difficult to treat asthma and severe therapy-resistant 
asthma (STRA). The former describes children who 
due to modifiable factors (e.g., poor adherence, incor-
rect use of inhaler) respond poorly to therapy. The latter 
comprises children who show poor responses to therapy 
even after addressing these modifiable factors [15]. This 
observation has prompted the research on differences 
in therapy response to transition from a “one-size-fits-
all” treatment to a more personalized approach [10, 46]. 
Therapies based on monoclonal antibodies targeting spe-
cific pathways implicated in asthma are showing already 
satisfactory results [47].

Two recent studies classified asthmatic children and 
adolescents from the Asthma Phenotypes in the Inner 
City (APIC) study into two groups: “difficult-to-control” 
(DTC) and “easy-to-control” (ETC) asthma. The DTC 
group included children requiring high doses of ICS 
over a 1-year period (6 visits) whereas the ETC children 
requiring low doses. It is important to mention that this 
group designation did not reflect asthma control [7, 48]. 
Key features separating both groups include atopy-related 
traits, rhinitis severity score, and body mass index (BMI). 
A reduction of controller requirement after the follow-
up period was observed only in the ETC group [48]. In a 
subsample of African-American children from the same 
cohort, the same two groups were compared including 
additionally inflammation and cytokine data. The DTC 
group presented higher percentage of blood eosinophils 
and neutrophils at baseline and a positive association 
with chemokine C-X-C motif ligand (CXCL)-1, interleu-
kin (IL)-17A, IL-8, and IL-5, while IL-4 and IL-13 were 
positively associated with the ETC group [7]. This is inter-
esting because it associates the DTC group with a mixed 
inflammatory profile (explained in the inflammatory sec-
tion), while ETC group shows a T2 dominant inflamma-
tory profile.

Phenotypes identified by clustering algorithms
In this section, different studies using clustering meth-
ods on specific children populations (e.g., severe asth-
matic children or preschool wheezing) are described, 
which aimed at identifying sub-phenotypes within these 
groups. When investigating severe asthmatic children, 
four distinct clusters were identified in a sample from 
the Severe Asthma Research Program (SARP) using a 
data-driven approach [8]. Three clusters included chil-
dren with early onset asthma and differing levels of atopy, 

T2 inflammation markers, and airflow obstruction. The  
fourth cluster included children with late-onset asthma, 
low atopy levels, and normal lung function [8]. Schatz  
and colleagues used a similar approach in an asthmatic 
children sample and identified five clusters, which differed 
in gender, ethnicity, lung function, and atopic burden [49].

Clustering methods have also been used to investigate 
a diverse school-aged asthmatic children population with 
differing severity and atopy levels. Zoratti and colleagues 
identified five distinct clusters in asthmatic children from 
the APIC study that covered all possible combinations of 
atopy and symptom severity [14]. Three clusters showed 
increasing levels of atopy and an increasing correlation 
with blood eosinophils, while the remaining two clusters 
had low levels of atopy. Noteworthy is the cluster des-
ignated as “cluster B,” which had the lowest atopy level, 
although it included many children requiring high doses 
of asthma controller therapy.

Another study took a similar approach and used these 
methods on recurrent wheezing children from the Child-
hood Asthma Prevention Study (CAPS) [12]. These 
clusters were classified as atopic wheezers, nonatopic 
wheezers, transient wheezers, paradoxical responders, 
and remitters. The atopic and nonatopic wheezers were 
the most severe groups showing similar American Tho-
racic Symptom report (ATS-B) scores and lung dysfunc-
tion but differing significantly in atopy markers. Notably, 
these clinical parameters remained stable in these two 
groups at the 7-year follow-up. In addition, the follow-
up included the measurement of fractional exhaled nitric 
oxide (FeNO), which was significantly higher in the atopic 
wheezer group. Interestingly, cluster “B” from the APIC 
study is similar to the nonatopic wheezers described in 
the CAPS study. In all these studies, an atopic and a non-
atopic cluster were identified; additionally, these groups 
could be separated in distinct subgroups with specific 
characteristics associated with differences in severity and 
exacerbation history.

These unbiased methods have proven to be relevant 
for therapy response, where a differential response to 
treatment has been observed between different clusters. 
Howrylak and colleagues applied clustering methods in 
asthmatic children from the Childhood Asthma Manage-
ment (CAMP) trial, a three-arm-randomized clinical trial 
comparing the treatment with budesonide, nedocromil, 
and placebo. Cluster identification was based on atopic 
burden, lung function, and exacerbation history [10]. The 
original study showed that only budesonide had a signifi-
cant reduction in asthma exacerbations and additional 
use of asthma controller medicine compared to placebo. 
When reanalyzing the data stratified by clusters, three 
of the five clusters showed a similar trend. However, 
children in a low atopic cluster with high exacerbations 
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had a beneficial response to both treatments compared 
to placebo, whereas children in the severe atopic cluster 
responded poorly to budesonide and nedocromil [10]. 
Chang et  al. also reported differences in therapy across 
clusters when using clustering analysis on data from 
another asthma treatment clinical trial [46].

Finally, asthma phenotypes have been almost exclu-
sively described in cohorts from European countries 
and the USA. However, due to the increase in asthma 
incidence in South America, Asia, and Africa, studies 
identifying asthma phenotypes from these regions are 
emerging [50–53]. One example is the study by Yoon 
and colleagues who performed a clustering analysis in 
school-aged asthmatic children from the Korean child-
hood Asthma Study (KAS), identifying four distinct clini-
cal phenotypes. Similar to previous reports, most clusters 
(three) were atopic, while one was non-atopic. Notably, 
two of the atopic phenotypes included predominantly 
male children; these phenotypes were also characterized 
by early-onset asthma compared to the female predomi-
nant cluster that included mostly children with late-onset 
asthma [54]. Another study analyzed wheezing trajec-
tories in South-African preschool-aged children. Even 
though the trajectories were similar to those described in 
European cohorts, differences regarding the age of onset 
and duration of symptoms between “equivalent” trajec-
tories were found [55]. The characterization of pheno-
types in different populations will help understand the 
impact of the environment and the genetic background 
on asthma heterogeneity.

To sum up, many different clinical phenotypes have 
been identified, some of which are currently relevant to 
clinical practice like the STRA phenotype. In addition, 
many of the clinical phenotypes that were originally 
identified using hypothesis-driven methods are being 

confirmed and expanded by clustering analysis (e.g., 
allergic and nonallergic asthma) (Table 1). However, clin-
ical phenotypes need to be better characterized to avoid 
overlap, which will make them more useful for early iden-
tification of children at high risk of developing asthma or 
improve treatment assignment.

Inflammatory endotypes
Studies aiming at identifying different inflamma-
tory endotypes among asthmatic children use similar 
approaches as described before using data of cell counts 
from different tissues (e.g., bronchoalveolar lavage (BAL), 
sputum, biopsies, and serum), cytokine measurements, 
and specific inflammation biomarkers (e.g., FeNO) [4]. 
Evidence supports the existence of four inflammatory 
endotypes in asthmatic children, designated as follows: 
T2-high (eosinophilic), neutrophilic, pauci-granulo-
cytic, and mixed granulocytic asthma [5, 57, 61, 62, 66] 
(Table  1). A better description of these endotypes may 
result in the identification of potential new targets for 
therapy; this is especially relevant for STRA children.

Inflammatory endotypes identified by hypothesis‑driven 
methods
The most common and best-described endotype is the 
T2-high (eosinophilic), which is also present in the adult 
population. This endotype has been described in children 
with mild, moderate, and severe asthma and is charac-
terized by a high degree of atopy, increased eosinophils 
(in sputum and serum), high levels of T2 cytokines (IL-4,  
IL-5, and IL-13), and early signs of airway remodeling 
[63, 64, 66]. Children with this endotype tend to respond 
well to ICS; however, a subset was described that did not 
[56]. Studies in adults suggest that an equivalent endo-
type should be divided into sub-endotypes, and similar 

Table 1 Overview of clinical phenotypes in asthmatic children associated with cluster analyses and inflammatory endotypes

Analyzed asthmapopulation Clinical phenotypes using 
hypothesis‑driven methods

Clinical phenotypes based on 
clustering methods

Inflammatory endotypes

Severe asthmatics (poor response 
to ICS)

Severe treatment-resistant asthma 
(STRA): Poor ICS response independ-
ent of modifiable factors [15]

SARP cohort: Four clusters (three 
atopic, one non-atopic) with dif-
ferences in asthma onset and lung 
function [8]
TENOR cohort: Five clusters (four 
atopic, one non-atopic) with differ-
ences in gender, ethnicity, and lung 
function [49]

T2-high (eosinophilic) [56]
Eosinophilic non-T2-high [57, 58]
Neutrophilic [59, 60]
Paucigranulocytic [61]
Mixed granulocytic [62]

Difficult-to-treat asthma: Poor 
response to ICS due to modifiable 
factors [15]

Mild, intermediate, and severe 
asthmatics

Allergic asthma: Presence of atopy 
and T2 biomarkers (e.g., FeNO) [40]

APIC cohort: Five clusters (three 
atopic and two non-atopic) with  
differences in lung function [14]
CAMP trial: Five clusters (three atopic 
and two non-atopic) with differences 
in exacerbation rates, lung function, 
and response to treatment [10]
KAS study: Four clusters (three atopic 
and one non-atopic) [54]

T2-high (eosinophilic) [63–65]
Only eosinophilic (based on data 
from blood) [63]
Paucigranulocytic (based on data 
from blood) [63]

Nonallergic asthma: Not associated 
with atopy [11]
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evidence is starting to accumulate in children [67]. Boss-
ley and colleagues compared children with STRA against 
healthy subjects and observed that the former displayed 
higher BAL and biopsy eosinophil counts. However, no 
difference between the groups in the concentration of T2 
cytokines in BAL and submucosal IL-5+ and IL-13+ cells 
was observed [57]. Children with similar characteristics 
have also been described in a study assessing therapy 
response to omalizumab [58]. Thus, this sub-endotype 
presents a high count of eosinophils but low atopy mark-
ers (e.g., IgE levels). In adults, the innate lymphoid cells 
type 2 (ILC2) has been implicated in the pathological 
mechanism underlying a similar sub-endotype, yet the 
role of this cell population remains to be investigated 
in children [15, 56]. Two phenotypes sharing features 
with the nonatopic and atopic eosinophilic phenotypes 
have been described in the German multicenter All Age 
Asthma Cohort (ALLIANCE), which includes preschool 
wheezers, school-age asthmatic children, and adult asth-
matics [63]. The three populations were grouped sepa-
rately into four different inflammatory endotypes using 
clinically relevant cutoffs of blood eosinophilia and atopy 
levels. These endotypes were consistent in all three age 
groups and described as eosinophilic atopic (T2-high), 
only eosinophilic, and only atopic and non-atopic nor 
eosinophilic (T2-low) [63].

The neutrophilic inflammatory endotype has been 
identified in children with STRA and is characterized by 
neutrophilic infiltration of the airways, where a Th1 or/
and Th17 skewed immune profile has been implicated 
[68]. Andersson and colleagues compared children with 
STRA against healthy controls identifying higher lev-
els of BAL eosinophils, submucosal eosinophils, and 
intraepithelial neutrophils in endobronchial biopsies of 
STRA children. These STRA children were divided based 
on the number of intraepithelial neutrophils, where the 
group with high neutrophils had better asthma control 
test (ACT) scores, better lung function, and lower doses 
of ICS [60]. These results suggest a beneficial role of neu-
trophil infiltration. However, another study reported 
two similar groups among STRA children based on BAL 
neutrophil percentages. They stimulated primary neutro-
phils from healthy patients with BAL from both groups. 
Neutrophils stimulated with BAL from the high-neutro-
phil group had greater phagocytic capacities; increased 
neutrophil extracellular traps (NET) formation, inflam-
matory mediators, and granule release; and enhanced 
survival. All these features point to a detrimental role of 
neutrophils [59]. Raedler and colleagues also identified 
among nonallergic asthmatic children a similar immune 
profile to that seen in neutrophilic asthma. The authors 
reported a shift towards a Th-17 response and elevated 
blood neutrophil counts. The more infrequent, mixed 

granulocytic and the paucigranulocytic endotypes are 
less well understood and have also been identified in 
STRA children, where the former is characterized by the 
presence of neutrophilic and eosinophilic inflammation 
and the latter by the absence of both inflammatory cells 
[61, 62].

The non-T2 endotype (neutrophilic and paucigranulo-
cytic) is discussed based on the current unclarity of (i) a 
novel mechanism underlying these specifics or (ii) just a 
steroid-driven result of immunosuppression. Solutions 
to this issue are difficult as characterization via inflam-
matory cells in the airways or sputum is primarily per-
formed in severe asthmatics, generally requiring high 
doses of ICS. Importantly, a murine asthma model with 
low T2 cytokines, neutrophilic inflammation, and ele-
vated levels of IL-17 and interferon (IFN)-γ with bron-
chial hyperresponsiveness has been developed and may 
help to elucidate its relevance [69]. In summary, different 
inflammatory endotypes have been described, and their 
detailed characterization may direct research towards 
new therapeutics and contribute to an adequate evi-
dence-based selection of the best treatment for specific 
groups of asthmatic children.

Inflammatory endotypes identified by clustering methods
Recent studies are applying clustering methods to iden-
tify inflammatory endotypes using cell counts, cytokine 
data, and clinical parameters. Guiddir and colleagues 
performed a cluster analysis using clinical variables 
(demographics, atopy-related variables, severity vari-
ables) and inflammatory cell counts (blood and BAL 
neutrophil and eosinophil counts) in children with recur-
rent wheeze (preschool age) or severe asthma from the 
Severe Asthma Molecular Phenotype (SAMP) study 
[65]. They identified three distinct clusters, one includ-
ing children with steroid refractory recurrent wheeze 
(94%) with high counts of blood neutrophils and another 
consisting of steroid refractory severe asthma with high 
counts of blood eosinophils. The third cluster included 
children with controlled recurrent wheeze having inter-
mediate blood cell counts and a high proportion of chil-
dren with controlled asthma [65]. Another study applied 
a clustering algorithm using eight variables covering 
inflammation, infection, sensitization, and ICS usage in 
preschool-age children with recurrent severe and with 
non-wheezing respiratory diseases [70]. Blood eosino-
phils were the only leukocytes that differed between both 
groups, with higher counts in children with recurrent 
wheeze. After clustering analysis, four distinct groups 
were identified, one atopic group with the highest BAL 
eosinophils cell counts and three non-atopic. Among 
the non-atopic, one cluster included almost all con-
trols with a similar number of recurrent wheezers who 
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did not receive ICS therapy. Another non-atopic cluster 
presented the highest counts of blood neutrophils [70]. 
Salvermoser and colleagues applied a different strategy 
using a clustering algorithm on cytokine data and charac-
terizing the clusters using specific IgE measurements and 
clinical variables [71]. Three distinct clusters were identi-
fied, and one presented a predominance of IFN-γ/IL-17/
IL-5 that agrees with the mixed granulocytic endotype. 
Here, airway inflammatory cell counts were not meas-
ured. This finding is also interesting because this study 
included children with mild to moderate asthma [71]. As 
with clinical phenotypes, clustering methods are proven 
to be useful for a more detailed understanding of inflam-
matory endotypes.

Molecular endotypes
Recent technological advances and lowering costs of 
high-throughput technologies from the “omics” fields 
are enabling asthma researchers to gather high amounts 
of molecular data from a large number of individuals 
[72, 73]. This section will focus on studies using novel 
approaches combining omics data with clustering meth-
ods. These strategies can be used to uncover specific 
pathophysiological mechanisms underlying the different 
endotypes [2].

Transcriptomics‑based endotypes
Transcriptomics constitutes the study of a defined RNA 
population from a cell or tissue that can comprise the 
whole transcriptome or a subset (e.g., mRNA, miRNA). 
This field has been intensively studied in relation to 
asthma in adults and children, reviewed elsewhere [72]. 
However, studies analyzing this data using clustering 
algorithms are still sparse and much more common in 
adults [74, 75]. One recent study identified three clusters 
using microarray technology in peripheral blood mono-
nuclear cells (PBMCs) from mild to severe asthmatic chil-
dren and adolescents [76]. One cluster had significantly 
higher blood eosinophils and ACT scores in combina-
tion with the highest levels of FeNO and total IgE and 
the lowest count of blood neutrophils. A second cluster 
presented significantly higher levels of blood neutrophils 
and lower ACT scores; it also had the lowest eosinophil 
counts and total IgE levels. The third cluster had inter-
mediate values for all variables. These three clusters 
agree well with the characteristic features of the T2-high 
(eosinophilic), neutrophilic, and mixed granulocytic 
inflammatory endotypes, respectively. Notably, the “high 
neutrophilic” cluster was considered the most severe 
cluster, and its expression profile was strongly associated 
with glucocorticoid signaling and activation of Th1/Th17 
immune pathways [76]. Another study used data from the 
same cohort and identified five clusters using 12 clinical 

variables including blood counts, total IgE levels, and 
lung function parameters. Expression profiles of subsam-
ples from each cluster were determined using microarray 
data and compared. Two of the five clusters were pre-
dominantly eosinophilic (one non-atopic), while another 
one was predominantly neutrophilic. Similar to the previ-
ously described study, the neutrophilic dominant cluster 
showed a differentiated gene expression profile compared 
to the other clusters, where identified genes were associ-
ated with corticosteroid response. Transcriptomics plays 
an essential role early on in asthma pathogenesis, where 
an early dysregulation in the transcriptome in two year 
old children preceding asthma manifestation has been 
found [77]. Thus, more studies identifying specific gene 
expression profiles among asthmatic children are neces-
sary to elucidate the molecular mechanisms underlying 
the disease.

Mass spectrometry‑based endotypes
Another fast-evolving field is mass spectrometry (MS) 
omics, where a defined set of biomolecules (lipids, pro-
teins, or metabolites) are quantified in a cell or tissue. 
Many studies have assessed the association between these 
molecules and asthma in children and adults, reviewed 
elsewhere [78]. However, studies using clustering analy-
sis in asthmatic patients combined with MS-omics data 
are just starting to evolve. Kelly and colleagues used 
metabolome-wide data and clustering analysis to identify 
five clusters in asthmatic children and adolescents from 
the genetics of asthma in Costa Rica study (GARCS). 
They found differences in lung function parameters 
between the clusters and validated these differences in 
an independent cohort. Different lipid molecules were 
key features for cluster differentiation suggesting a role 
of pulmonary surfactant homeostasis in asthma sever-
ity [79]. Metabolomics data of exhaled breath conden-
sate have also been analyzed using clustering algorithms, 
where three identified cluster differed in blood eosinophil 
percentage, gender, and exacerbation ratio. Hydroxybu-
tyrate and formate were important metabolites for cluster  
assignment [80].

Infant bronchiolitis is a risk factor for asthma diagno-
sis. Recent studies use different MS omics and cluster-
ing algorithms to identify endotypes in children suffering 
from acute bronchiolitis. These clusters were character-
ized, and their risk for developing asthma and recur-
rent wheeze was prospectively evaluated. Fujiogi and 
colleagues used lipidomics data from nasopharyngeal 
swabs and identified four endotypes, one characterized 
by high atopy and low levels of sphingolipids. Children 
in this cluster had the highest risk of developing recur-
rent wheeze and asthma. Interestingly, sphingolipid bio-
synthesis is regulated by the 17q21 locus gene ORMDL3 
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which has been associated with childhood asthma [81]. 
These results agree with a similar study conducted on 
the same study sample using metabolomics data [82]. 
In addition, proteomics data from serum samples of 
children from this cohort have been analyzed using 
clustering algorithms, where three endotypes were iden-
tified. Children assigned to an endotype characterized by 
atopy and upregulation of nuclear factor k-light-chain-
enhancer (NF-κB) and phosphoinositide-3-kinase (PI3K) 
signaling pathways were also at higher risk of having an 
asthma diagnosis at 6 years of age [83].

Implications and future perspectives
Importance of phenotypes and endotypes in childhood 
asthma
In summary, different phenotypes and endotypes have 
been described in asthmatic children and adults with 
potential use in clinical practice (diagnosis, prediction, 
therapy) [20]. These studies have contributed to our bet-
ter understanding of asthma, and some are starting to 
shape asthma management, specifically in adults. Nota-
bly, sputum eosinophils and FeNO have been included in 
GINA management guidelines 2022 as alternative strat-
egies for adjustment of asthma treatment in adults and 
individuals older than 12 years, respectively [45]. In addi-
tion, the described inflammatory endotypes provided 
the theoretical basis for the development of therapeutics 
based on monoclonal antibodies (biologicals) target-
ing up- and downstream effectors of asthma-associated 
signaling pathways. These are mainly directed at T2-high 
effectors (IgE, IL-5, IL-4); however, biologicals target-
ing potential T2-low effectors (e.g., neutrophilic asthma) 
are currently being tested (e.g., IL-1β, IL-17A) [47, 84]. 
At present, six different biologicals have been approved 
for their use in children (five anti-T2-high effectors and 
anti-TSLP), although information on their long-term use 
in this population is still lacking and is often extrapo-
lated from adults [85]. In addition, none of the biologicals 
has been approved for asthma in children younger than 
6  years of age; thus, clinical trials looking at safety and 
effectiveness in this population are urgently needed.

Limitations of asthma phenotypes and endotypes
Although these phenotypes and endotypes have proven 
valuable for our understanding of asthma, several limi-
tations hinder their inclusion into clinical practice yet, 
especially in children. One significant limitation is our 
poor understanding of their temporal stability. Most 
studies focusing on this topic use a cross-sectional 
design, thus lacking the assessment of longitudinal fea-
tures. Many experts have criticized this, which led to the 
European Respiratory Society task force recommend-
ing in 2014 not to treat MTW and EVW phenotypes 

differently [86]. Researchers also report low stability 
among inflammatory endotypes [87]. In addition, most 
of these are described in STRA children where the influ-
ence of high ICS doses is unclear [68]. A better under-
standing of the temporal stability of these phenotypes 
and endotypes is critical for childhood asthma, which 
shows higher variability and different trajectories than 
adult asthma [88]. Thus, researchers aiming at identifying 
reliable asthma phenotypes and endotypes in children 
need to implement longitudinal study designs to evaluate 
them at different time points, yet certainly challenging 
in practice. Spycher and colleagues recently addressed 
this issue by estimating transition probabilities between 
MTW, EVW, and non-wheezers during their first 6 years 
of life in a sample of around 10,000 children [13]. They 
replicated their observations in an independent cohort 
and showed that even though a high proportion of MTW  
and EVW children become asymptomatic at 6 years, it is 
more likely that they remain within their phenotypes [13].

Validation and replication of phenotypes and endo-
types are also important, specifically for studies using 
clustering methods. These studies require inclusion of 
validation sets. Although many report cluster stability 
measures, only a few conducted proper validation [71]. 
Of note, an increasing number of studies have identi-
fied novel phenotypes and endotypes, but also replica-
tion of existing ones is key for confirmation of possible 
and consistent mechanisms allowing further elucida-
tion of their role as future biomarkers or even therapy 
options. Chang and colleagues demonstrated in their 
study that this is feasible by replicating the clusters 
identified in the SARP cohort by means of careful and 
thorough statistical methods [46]. Another aspect that 
hinders replication and comparability between pheno-
types and endotypes from different studies is the selec-
tion of variables used to create and describe the clusters 
[32]. Variable selection is a critical step for phenotype 
and endotype identification. Deliu and colleagues dem-
onstrated this, by testing three different approaches 
for variable selection. Each method resulted in differ-
ent phenotypes with poor overlap and different clini-
cal characteristics. The most stable phenotypes were 
selected using a blended approach combining clinical 
experts and appropriate biostatistical methods [53].

Recommendations for future clustering analyses
Considering the high numbers of current studies using 
clustering methods, developing a guideline for these 
studies would help coordinate efforts across research 
groups. An interdisciplinary-based expert guideline aim-
ing to include a set of standardized variables for clus-
ter characterization, detailed clinical characterization, 
and study proceeding with carefully planned statistical 
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strategies would greatly facilitate across-study compari-
sons and enable meta-analyses. Additional variables can 
still be included and presented as sensitivity analyses. 
Conrad and colleagues have proposed relevant features 
for this [32]. Finally, the study by Fujiogi and colleagues 
shows impressively how different data (clinical data, viral 
infection data, lipidomics data) can first be clustered 
separately and in a second step combined [81]. Research 
in this direction will bring us closer to a systems biol-
ogy approach, which analyzes different data “types” in an 
integrative manner.

Conclusions
Several phenotypes and endotypes have emerged for 
childhood asthma, reflecting variability in clinical param-
eters, inflammatory profiles, and molecular mechanisms. 
Information regarding their temporal stability and repro-
ducibility is lacking and can provide important addition 
for future studies. Recent advances in statistical meth-
ods and molecular techniques are currently applied, and 
more comprehensive analyses following a systems biol-
ogy approach are expected. The identification of stable 
phenotypes and endotypes will change our understand-
ing and the management of childhood asthma. This goal 
will be achieved by a careful combination of omics data 
with immunological functional assessment.
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