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Abstract 

Bronchopulmonary dysplasia (BPD) is a multifactorial disease occurring as a consequence of premature birth, as well 
as antenatal and postnatal injury to the developing lung. BPD morbidity and severity depend on a complex interplay 
between prenatal and postnatal inflammation, mechanical ventilation, and oxygen therapy as well as associated 
prematurity-related complications. These initial hits result in ill-explored aberrant immune and reparative response, 
activation of pro-fibrotic and anti-angiogenic factors, which further perpetuate the injury. Histologically, the disease 
presents primarily by impaired lung development and an arrest in lung microvascular maturation. Consequently, BPD 
leads to respiratory complications beyond the neonatal period and may result in premature aging of the lung. While 
the numerous prenatal and postnatal stimuli contributing to BPD pathogenesis are relatively well known, the specific 
cell populations driving the injury, as well as underlying mechanisms are still not well understood. Recently, an effort 
to gain a more detailed insight into the cellular composition of the developing lung and its progenitor populations 
has unfold. Here, we provide an overview of the current knowledge regarding perinatal origin of BPD and discuss 
underlying mechanisms, as well as novel approaches to study the perturbed lung development.
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Introduction
Bronchopulmonary dysplasia (BPD) is the most common 
form of chronic lung disease in children and a leading 
cause of neonatal morbidity and mortality [1–3]. Since 
1999, the disease has been defined by the need for sup-
plemental oxygen at 36  weeks post-menstrual age, and 
is classified based on its severity, as well as oxygen and 

respiratory support requirements into three grades: mild, 
moderate, or severe [4, 5]. While advancements in neo-
natal care led to improvements in survival of premature 
infants, the incidence of BPD has not decreased. Not sur-
prisingly, BPD is now less frequent in infants with birth 
weight > 1200 g, or born after 30 weeks of gestation, but 
affects extremely premature infants of lower gestational 
age [4–6].

BPD is a multifactorial disease which occurs pre-
dominantly as a consequence of prematurity leading to 
respiratory distress and consequent treatments in neo-
natal intensive care units (NICU), including mechanical 
ventilation (MV) and oxygen supplementation [2, 5]. In 
addition to the degree of prematurity, additional ante-
natal and perinatal risk factors include low body weight 
(LBW), infection, and maternal nutrition [6–8]. More-
over, preeclampsia and intrauterine growth restric-
tion (IUGR) are identified as independent risks factors 
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[6, 9–11]. Recent studies further indicate that prenatal 
smoke exposure might also contribute to the devel-
opment of the disease [12, 13]. Finally, BPD may have 
some hereditary component [14, 15]. While increased 
prevalence of BPD is typically associated with male sex, 
in the long term, female patients with a history of BPD 
might be affected more severely [6, 16, 17].

In the past BPD was associated mostly with aggressive 
MV in more mature infants [18]. However, advances in 
ventilation technology, avoidance of MV, and more judi-
cious use of oxygen result in a new histological pheno-
type characterized less by fibrosis and more by global 
arrest in alveolar and microvascular development, as 
well as impaired, and sometimes declining lung function 
[4, 5]. BPD is also associated with long-term sequelae, 
which often persist into adolescence or early adulthood, 
including neurodevelopmental and cognitive changes 
[19], impaired lung function [2, 20, 21], pulmonary vas-
cular disease [2, 22], and cardiac dysfunction [2, 23]. 
Impaired immune development results in increased sus-
ceptibility to viral infections and higher risk of rehos-
pitalization later in life [1, 4, 6]. The disease is further 
associated with increased incidence of asthma [21] and 
early-onset emphysema [24].

BPD constitutes a complex injury to the developing 
lung with heterogenous pathological features and out-
comes, greatly depending on the degree of prematurity, 
as well as antenatal and postnatal exposures. In the fol-
lowing paragraphs we discuss underlying causes and 
mechanisms contributing to the development of BPD, as 
well as novel approaches to study BPD pathogenesis.

Intrauterine growth restriction, placental 
dysfunction, and preeclampsia
IUGR is defined as a failure of the fetus to reach its “bio-
logically based potential” [25]. The condition can arise 
due to anatomical or functional disorders associated with 
maternal factors, maternal-placental-fetal unit, or genetic 
abnormalities [26–29]. IUGR often results in malnutri-
tion, LBW, and permanent perturbations in metabolism 
and development [26, 28]. It is a known cause of prema-
turity and associated with increased morbidity and mor-
tality [26, 30].

In experimental animal models, IUGR can be induced 
by various interventions, including uterine artery ligation 
[31], low protein diet (LPD) [32–34], or heat exposure [9]. 
Impaired alveolar and vascular formation during postnatal 
development and/or in adulthood were reported in various 
IUGR models in rats [32–35] and sheep [9, 36, 37]. IUGR 
in developing rat pups from LPD-fed mothers is associated 
with impaired lung development, as evidenced by increased 
alveolar septal thickness, Col1a1 expression and extracellu-
lar matrix (ECM) deposition at P23 [34]. These changes are 

preceded by an inhibition of GH/Stat5/IGF-1 signaling dur-
ing the embryonic phase. Decreased IGF-1 levels were also 
reported in serum of BPD patients [38]. Notably, IGF-1 was 
shown to have anti-inflammatory properties, to preserve 
lung structure, and to prevent right ventricular hypertro-
phy (RVH) in a rat BPD model [39–41]. IUGR in rats fur-
ther impaired embryonic VEGF and BMP signaling, and 
decreased microvascular and ECM formation postnatally 
[35]. Finally, microRNA microarray analysis revealed per-
turbations to “tissue repair” and “cellular communication” 
pathways [33]. In addition to structural changes, IUGR 
impairs lung function in developing rats [42, 43], while in 
clinical studies, IUGR and LBW are associated with poorer 
lung function in childhood [44, 45] and adulthood [46–48]. 
The impact on lung function may be directly related to a 
higher prevalence of BPD among the IUGR patients [11]. 
Finally, studies show that IUGR and LBW may contribute 
to development of chronical illness such as asthma [49] or 
chronic pulmonary obstructive disease (COPD) [50, 51].

Placental dysfunction and preeclampsia (PE), major 
causes of IUGR, also impact lung development. While 
the underlying molecular mechanisms remain unknown, 
PE is an independent risk factor for both, preterm deliv-
ery, and the development of BPD [6, 10, 52]. Pathologi-
cal placental changes resulting from maternal vascular 
underperfusion (MVU) are associated with increased 
risk of BPD [53]. A recent meta-analysis of 211 stud-
ies show that placental vascular dysfunction in associa-
tion with IUGR or being born small for gestational age 
(SGA) increases the risk of BPD and pulmonary hyper-
tension (PH) [54]. Accordingly, decreased levels of cord 
blood angiogenic factors are strong predictors of BPD-
associated PH [55]. Taken together, these data strongly 
indicates the strong association between the placental 
dysfunction of prematurity and vascular phenotype of 
BPD, supporting the so-called “vascular hypothesis” of 
BPD pathogenesis and the potential preventive use of 
proangiogenic agents in such patients [56].

While several preclinical models of PE have been 
designed, most differ from the human condition and rep-
licate the condition to only a limited extent [57]. These 
include genetic models, such as the hypertensive BPH/5 
mouse model [58], chronic hypoxia models [59, 60], or 
pharmacologically-induced models, such as nitric oxide 
inhibition [61, 62]. Widely used are also surgical models, 
such as the reduced uterine perfusion pressure (RUPP) 
[63], or selective RUPP rat model [64]. Interesting is also 
the CBA/J × DBA/2 J mouse model of recurrent miscar-
riage and spontaneous PE, recapitulating many features 
of the clinical condition, including renal damage, placen-
tal growth defects, restricted fetal growth, and increase 
sFLT-1 and leptin levels [65]. However, the animals do 
not become hypertensive, therefore not meeting the 
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clinical criteria. Building on the notion of the importance 
of the above-mentioned sFLT-1 is another rat model, 
where PE is induced by intraamniotic sFLT-1 injections 
[66]. This model recapitulates retardation in lung growth, 
as well as findings of abnormal lung function, vessel den-
sity, and RVH. Importantly, both antenatal and postnatal 
treatment with selective anti-sFLT-1 antibody improved 
alveolarization, vessel formation, and lung function and 
decreased RVH in developing pups. Moreover, authors 
have shown similar result of anti-sFLT-1 treatment in the 
endotoxin-induced rat chorioamnionitis model [66].

Finally, maternal malnutrition or overnutrition are also 
associated with metabolic changes leading to increased 
risk of developing diabetes, obesity, and metabolic syn-
drome in later life [67–69]. Combined insult of IUGR and 
maternal high-fat diet (HFD) increase the risk of early 
cardiovascular pathology in rats [31]. Furthermore, HFD 
in rat dams prior to conception, or HFD diet from pre-
conception until lactation increases airway resistance in 
the offspring [70]. Taken together, these findings high-
light the impact of perinatal nutrition on lung develop-
ment and the origin of adult pulmonary disease.

Patent ductus arteriosus, pulmonary hypertension, 
and microbiome
Patent ductus arteriosus (PDA) is a frequent complica-
tion in very preterm infants, with up to 70% of infants 
born before 28th week of gestation requiring pharma-
cological or surgical treatment [71, 72]. The condition 
is associated with increased lung blood flow, impaired 
lung mechanics, oxidative stress, and increased need 
for MV. PDA is clinically often associated with RDS 
and BPD and is historically considered a risk factor for 
BPD [73–77]. However, whether PDA plays a causal role 
in BPD pathogenesis is not known [72, 78, 79]. In fact, 
multiple randomized control trials have failed to find a 
direct relationship between PDA and the development 
of BPD [78, 80–83]. PDA closure is performed either 
pharmacologically or surgically. Pharmacological closure, 
typically achieved with indomethacin or ibuprofen, was 
shown to improve alveolarization and lung mechanics, as 
well as the need for ventilator support [84–86]. Whether 
the improvement is due to PDA closure or the pharma-
cological agents themselves however is not fully under-
stood. These improvements have not been observed 
after surgical closure, with some reports indicating that 
early surgical ligation itself may contribute to impaired 
alveolarization [78, 87, 88]. Additionally, studies indi-
cate differences in outcome dependent on timing of the 
pharmacological closure [89, 90]. Consequently, recent 
studies and review literature recommend avoidance of 
surgical ligation and further investigations into timing of 
PDA closure [78, 91, 92].

During the fetal development, gas exchange is provided 
by placenta and fetal pulmonary vascular resistance 
(PVR) is high. Perinatal transition is normally marked by 
a significant decrease in PVR, resulting in up to tenfold 
increase in pulmonary blood flow [93–95]. However, in 
some instances this change in vascular resistance does 
not occur, resulting in PH. Neonatal PH is a frequent 
complication in premature infants, particularly those 
with extremely LBW [96]. While not fully understood, 
among the known risk factors contributing to neonatal 
PH are low birth weight, SGA status, oligohydramnios, 
PE, severity of BPD, and prolonged MV [94, 97]. A con-
sensus approach to better classify pediatric PH recog-
nizes 10 categories of pulmonary hypertensive vascular 
disease, including the BPD-PH category [98, 99]. Up 
to 25% of patients with moderate to severe BPD also 
develop PH [99–101]. It can present itself as primary 
PH, acute PH associated with RDS or chronic PH asso-
ciated with BPD (BPD-PH). Additionally, neonatal PH 
can be exacerbated by a PDA. BPD-PH is characterized 
by aberrant pulmonary vascular growth and remodeling, 
RV failure, increased mortality, and increased risk of PH 
and right ventricular dysfunction in adulthood [99, 102]. 
Initial diagnosis of neonatal PH is typically based on 
echocardiography and clinical representation. Late onset 
of PH in BPD patients (3–4 months of age) is now well 
described and justifies continuous screening for PH in 
premature infants with BPD [96]. Current therapies are 
based on the underlying pathophysiology of neonatal 
PH and include maintaining adequate oxygen saturation, 
correction of acidosis, surfactant therapy, and the use of 
pulmonary vasodilators, such as inhaled nitric oxide and 
sildenafil [94, 95].

Another intriguing, but understudied factor impact-
ing the perinatal period is the microbiome. Studies have 
revealed alterations in airway and lung microbiome of 
prematurely born infants and suggest a link between 
the microbiome and BPD severity. A recent systematic 
reviews showed that most studies indicate decreased 
bacterial diversity, higher levels of Ureoplasma, and 
lower levels of Staphylococcus in the tracheal aspirates 
(TAs) of preterm infants who went on to develop severe 
BPD [103–107]. BPD progression was further associated 
with microbial turnover and relative abundance of differ-
ent bacterial strains. It is important to note that major-
ity of the infants included in these studies have received 
prenatal or postnatal antibiotics, which has previously 
also been associated with increased risk and severity 
of BPD [103, 105, 108–110]. Finally, a recent study has 
explored the relationship between perinatal microbi-
ome and metabolome. The authors observed an increase 
in Proteobacteria, a reduction in Lactobacilli, as well as 
reduction in fatty acid β-oxidation pathway in infants 
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with BPD [111]. While this data suggests a role for airway 
microbiome in the regulation of inflammation, further 
studies are needed to identify the mechanisms by which 
microbiome at birth modulates and primes the pulmo-
nary metabolome.

Prenatal inflammation
Increasing evidence suggests that pre- and postnatal 
inflammation play critical roles in the development of 
BPD. BPD is associated with an increase in pro-inflam-
matory and decrease in anti-inflammatory cytokine 
levels, lung neutrophil and monocyte infiltration, and 
macrophage activation. Whether pre- or postnatal 
inflammation contribute more to the development and 
severity of BPD is not known.

Multiple types of prenatal inflammation have been 
suggested as BPD risk factors, including chorioam-
nionitis [112], fetal inflammatory response syndrome 
[113], and neonatal leukemoid reaction [114]. Most 
widely studied in the context of BPD is chorioam-
nionitis, a complex syndrome associated with pre-
term delivery. Chorioamnionitis is an inflammation 
of chorion and amnion membranes, often caused by 
bacterial infection, and usually classified as either 
histological or clinical [115]. The histological form 
is characterized microscopically by inflammatory 
cells infiltration, while the clinical form is defined by 
abdominal pain, presence of uterine tenderness, fever, 
increased white blood count, and maternal and fetal 
tachycardia [115, 116]. Studies in experimental ani-
mals suggest that antenatal inflammation can affect 
the expression of grow factors, modulate the immune 
system, and contribute to structural changes in the 
lung, resembling the BPD phenotype [117]. Intrauter-
ine inflammation in animal models is often induced 
by bacterial lipopolysaccharide (LPS). Pre- or postna-
tal LPS in rodents and sheep results in inflammation, 
alveolar hypoplasia, impaired surfactant production, 
and impaired pulmonary vascular function [118–121]. 
Importantly, amniotic concentrations of IL-6, IL-8, 
IL-1β, and TNF-α are increased in mothers of infants 
who develop BPD [122]. However, the clinical data 
on relationship between chorioamnionitis and BPD 
remain inconclusive [123–125]. This is partly due to an 
inconsistent diagnosis and lack of correlation between 
clinical and histological chorioamnionitis [116, 126]. 
In fact, some studies indicate that the increased risk 
of BPD is rather associated with the postnatal conse-
quences of chorioamnionitis and prematurity, such 
as surfactant deficiency, neonatal sepsis, and need 
for MV [112, 126–128]. Additionally, postnatal sep-
sis directly increases BPD incidence and interrupts 

lung development by various mechanisms, including 
inflammation, oxidative stress, and endothelial injury 
[126, 129].

Mechanical ventilation, hyperoxia, and postnatal 
inflammation
Prematurity in infants is furthermore directly asso-
ciated with the need of respiratory support and ven-
tilation. Ventilation constitutes a major risk factor 
for lung injury and BPD. Initial injury results from 
both, barotrauma and volutrauma, which initiate an 
influx of immune cells, particularly macrophages and 
neutrophils, and an increase in production of pro-
inflammatory cytokines [130–133]. Elevated levels 
of pro-inflammatory IL-1β, IL-6, and IL-8 are found 
in TAs and blood of BPD patients [134]. Compara-
ble cytokine profiles can be observed in ventilated 
rats, lambs, and baboons [135–137]. Similar to MV, 
hyperoxia exposure is as an independent mediator of 
lung inflammation [112, 131, 138–140]. Hyperoxia 
induces inflammation primarily via increase in IL-1β 
as evidenced by experiments with overexpression and 
blocking of IL-1β signaling [141–144]. Moreover, some 
evidence exists for the role of Csf1r+ monocytes and 
macrophages in hyperoxia-induced lung injury [138]. 
Finally, oxidative stress induced by hyperoxia impacts 
the expression of large number of genes implicated in 
cell cycle, signal transduction, ECM turnover, coagula-
tion, and alveolar growth [145]. The initial inflamma-
tory response disturbs the homeostasis and triggers 
additional mediators and growth factors which in 
turn impact alveolar and microvascular formation 
[146, 147]. Depending on the model used however, the 
inflammatory response induced by hyperoxia might 
be considered moderate. To better reflect the clini-
cal situation, various double-hit models combining 
postnatal hyperoxia with either pre- or postnatal LPS 
administration were developed [148–153]. Results of 
these studies vary depending on species, strain, and 
LPS dosage. Overall, both pre- and postnatal endo-
toxin amplifies the effects of hyperoxia exposure in 
dose-dependent manner [148, 152]. Additionally, only 
animals exposed to both hits developed prominent PH 
[152], as well as intense local and systemic inflamma-
tory response [149, 151].

Both, MV and hyperoxia exposure induce alveolar 
hypoplasia in mice [154, 155], rats [156, 157], lambs [130], 
and baboons [136]. Ventilation in premature infants is 
associated with underdeveloped terminal airspace epi-
thelium and epithelial apoptosis [158–160]. Parallel 
observations of epithelial inflammation and shedding, 
as well as epithelial hyperplasia were made in ventilated 
lambs [161, 162] and baboons [163] respectively. MV and 



Page 5 of 17Mižíková and Thébaud  Molecular and Cellular Pediatrics            (2023) 10:4  

hyperoxia exposure are further associated with increased 
[164, 165] or decreased [166, 167] alveolar epithelial type 
2 (AT2) cells proliferation. Finally, both hyperoxia [168] 
and cyclic stretch [169] disrupt epithelial permeability 
in vitro.

Reduction in lung microvascularization is seen in 
BPD patients [170, 171] and in various animal models 
[172, 173] alike. Both, hyperoxia and ventilation inhibit 
pro-angiogenic VEGF signaling in rodent [172–174], 
rabbits [175], and baboons [176], reminiscent of obser-
vations in the lungs, plasma, and TAs of BPD patients 
[177–179]. Decreased levels of additional pro-angio-
genic factors have also been observed. Expression levels 
of eNOS are decreased in hyperoxia-exposed mice and 
ventilated lambs [174, 180]. Lowered Tie-2 and Ang-1 
levels are found in ventilated preterm infants [181] and 
Ang-1 expression is decreased in hyperoxia-exposed 
mouse pups [182]. Similarly decreased in BPD patients 
and hyperoxia-exposed mice is the production of novel 
angiogenic markers such as Foxf1 and c-Kit [183].

The mesenchymal damage in the “new” BPD mani-
fests in form of thickened alveolar septa, defective ECM 
deposition, and interstitial fibrosis [147, 184, 185]. Com-
parable findings were made in various animal mod-
els, including ventilated lambs and baboons [136, 186], 
as well as ventilated and hyperoxia-exposed rodents 
[172, 187–189]. Among the most studied in context of 
late lung development and BPD are the FGF, TGF-β, 
and PDGFA signaling pathways. Among the FGF fam-
ily, pulmonary FGF10 expression is decreased [190], 
while FGF2 TA levels are increased in BPD patients 
[191]. Elevated FGF2 expression is also found during 
compensatory lung growth in hyperoxia-exposed rats 
[192]. PDGFA, as well as its receptor PDGFRA, are 
critical for secondary septation and their loss results in 
decreased myofibroblasts migration and proliferation 
[193–195]. Decreased PDGFRA expression is found in 
animal hyperoxia BPD models [151, 194, 196] and the 
low expression of PDGFRA is associated with increased 
BPD incidence in male patients [197]. TGF-β signaling is 
essential for fetal lung development and is dynamically 
regulated during alveolarization [198, 199]. Increase in 
TGF-β expression was reported in TAs of BPD patients 
[200]. Similarly, an increased TGF-β expression is asso-
ciated with alveolar hypoplasia secondary to hyperoxia, 
which could be prevented by treatment with TGF-β 
neutralizing antibody [201, 202]. Perturbances in both, 
PDGFA and TGF-β signaling are associated with defects 
in secondary septation, during which elastin is deposited 
at the top of the protruding septa by myofibroblast. This 
ECM scaffold provides a base for further alveolar for-
mation [147]. Impaired elastic fibres formation and an 
increased expression of elastin and elastin or collagen 

cross-linking enzymes were noted in BPD patients 
[203–205], as well as ventilated and hyperoxia-exposed 
rodents and lambs [186–188, 205, 206].

It is important to note that considerable efforts have 
been made to establish less invasive therapies, avoid-
ing intubation and mechanical ventilation. These strate-
gies include sustained inflation approaches, such as nasal 
continuous positive airways pressure (NCPAP) or syn-
chronised nasal intermittent positive pressure ventila-
tion (SNIPPV) [207, 208]. Particularly the combination 
of NCPAP and early surfactant-replacement therapy is 
more effective in preventing BPD than continuous MV 
and elective surfactant replacement [207, 209]. How-
ever, meta-analysis revealed that it is the avoidance of 
endotracheal MV, rather than sustained inflations strat-
egies themselves, which decreases the risk of BPD and 
death [208]. As even a brief intubation early in life can 
have severe consequences, less invasive methods of sur-
factant delivery, such as less invasive surfactant adminis-
tration (LISA) and minimally invasive surfactant therapy 
(MIST), have recently been developed. In combination 
with NCPAP these strategies currently represent very 
promising approaches to decrease the BPD occurrence 
[208, 210–212].

BPD phenotypes and endotypes
The multifactorial nature of BPD pathogenesis, com-
bining various prenatal and postnatal insults results in 
several discrete endotypes and clinical phenotypes. As 
mentioned above, the biggest differences in clinical mani-
festation could be observed between the so-called “old”, 
profibrotic-like BPD phenotype and the “new” BPD char-
acterized mainly by parenchymal and vascular damage 
[4, 5, 213]. Various classifications of BPD phenotypes 
have been proposed, including the categorization based 
on (i) severity [214], (ii) lung function (obstructive vs. 
restrictive phenotype) [215], or (iii) most effected tissue 
compartment [213, 216, 217]. Perhaps the most detailed 
classification, proposed in a recent review by Pierro et al., 
includes seven categories of BPD phenotypes: (i) paren-
chymal (characterized by alveolar simplification), (ii) 
peripheral airway (defined by bronchial hyperreactiv-
ity), (iii) central airway (stenosis, bronchomalacia, and 
tracheomalacia), (iv) interstitial (interstitial fibrosis and 
inflammation), (v) congestive (with pulmonary edema), 
(vi) vascular (dysmorphic vascularization and PH), and 
(vii) mixed phenotype [213].

Individual phenotypes do not only require differ-
ent treatments but have different disease development 
and consequences in later life. The parenchymal phe-
notype, which is defined by arrest in alveolarization 
and decreased alveolar surface area, largely resembles 
emphysema. In fact, about two-thirds of BPD patients 
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develop obstructive disease [215]. While the lung has 
capacity to continue alveolarization postnatally and 
parenchymal disease may improve over time, parenchy-
mal damage in BPD has been previously associated with 
early onset chronic obstructive lung disease (COPD) in 
later life [213, 218]. The second obstructive phenotype—
the peripheral airway phenotype, characterized by bron-
choconstriction and hyperreactivity manifests similarly 
to asthma. However, studies have shown that at school 
age, these patients respond differently to treatments with 
β2-agonists than asthma patients and that the disease 
might be additionally characterized by structural changes 
in small airways [213, 216, 219].

In addition to BPD phenotypes, two main BPD endo-
types are often recognized: (i) infection/inflammation 
(including chorioamnionitis) and (ii) placental dysfunc-
tion (including preeclampsia and IUGR) [213, 220]. 
While chorioamnionitis and infection represent the more 
common endotype, placental dysfunction in combination 
with IUGR constitute a more prominent background for 
vascular BPD phenotype [54, 221]. Ideally, in accordance 
with emerging personalized medicine approaches, dis-
tinct BPD phenotypes will be considered when assigning 
therapies and identifying possible complications in later 
life. However, details regarding underlying mechanisms 
and cellular integrations pertaining to individual pheno-
types have not been yet deciphered.

Novel approaches to study the preterm lung
BPD in single‑cell resolution
Understanding the lung composition on single-cell level 
has been a focus of substantial scientific research for 
more than a decade. During this period, more than 300 
single-cell RNA sequencing (scRNA-seq) or single-nuclei 
RNA sequencing (snRNA-seq) human or animal lung 
datasets have been published. However, only a small frac-
tion of these is dedicated to late lung development, and 
even fewer to the pathogenesis of BPD.

First exploratory scRNA-seq analysis of postnatal 
developing lung in mice were performed by Cohen et al., 
constructing a detailed single-cell map of the develop-
ing lung and lung progenitor cell populations covering 
the period from embryonic day (E)12.5 to postnatal day 
(P)7 [222]. The study identified 10 non-immune and 12 
immune cell populations, revealing dynamic changes in 
population sizes, particularly during the pseudoglandular 
(E12.5) and canalicular stage (E18/19) of lung develop-
ment. This data were further expanded in another study, 
characterizing lung immune  (CD45+) cells between E18.5 
and P21 [223]. When comparing the prenatal and post-
natal immune cells authors identified a gradual increase 
in macrophage heterogeneity, as well as rapid increase 

in the proportion of lymphoid populations (2% vs 60% of 
all immune cells, respectively). Additional studies have 
focused on the developmental changes and postnatal 
adaptation in lung epithelial, endothelial, and stromal 
populations [224–227].

Several scRNA-seq studies have contributed to estab-
lishing a cell atlas of human fetal lung development 
[228–231]. No study to date has analysed lungs of BPD 
patients, although the scRNA-seq analysis of TA-derived 
cells to establish novel biomarkers and aid in stratifying 
BPD into endotypes has recently been proposed [232]. In 
contrast to the lack of studies in humans, few studies have 
explored the BPD pathogenesis at the single-cell level in 
the neonatal mouse hyperoxia model [151, 183, 226]. As 
mentioned above, the expression levels of angiogenic 
markers FOXF1 and c-KIT are decreased in the lungs of 
BPD patients [183]. This was confirmed by scRNA-seq 
in adult mouse lungs where hyperoxia exposure for first 
7 days of life decreased the number of c-Kit+ endothelial 
cells (ECs) progenitors. Importantly, authors showed that 
adoptive transfer of c-Kit+ ECs improved lung angiogen-
esis and alveolarization in developing hyperoxia-exposed 
mice [183]. Substantial expression changes in all cell com-
partments were observed in the largest to date study of 
hyperoxia-exposed developing mice by Hurskainen et al., 
profiling over 66.000 lung cells at P3, P7, and P14 [151]. 
In this study, hyperoxia caused gradual changes in cell 
composition and expression patterns, particularly after 
7  days of exposure. Within the stroma, authors identi-
fied transcriptomic shifts in myofibroblasts, pericytes, 
and Col13a1+ fibroblast, which were also among the 
most active signal senders and receivers in the hyperoxic 
lung. The study further revealed a substantial depletion of 
gCap (general capillary) cells and an increase in number 
of Car4+ aCap cells (aerocytes) after hyperoxia exposure 
[151]. The gCap cells were previously identified as puta-
tive distal lung vascular progenitors and regulators of 
capillary homeostasis, vasomotor tone, and repair [233]. 
The depletion of gCap ECs may contribute not only to the 
developmental injury, but also to the lack of repair capac-
ity and an increased susceptibility to lung injury later in 
life, implying potential benefits of EC-derived cell thera-
pies in BPD [151, 234]. In parallel, the Car4+ aCap cells 
showed pathological gene expression characterized by 
pro-inflammatory and anti-angiogenic markers. This is 
in agreement with recent reports, that aCap cells might 
contribute to septation [227] and revascularization fol-
lowing injury [235]. Moreover, the study highlighted the 
importance of inflammation in hyperoxia injury, with 
majority of the impacted transcriptional programs related 
to inflammatory response [151]. Finally, a recent study 
explored the long-term implication of neonatal hyper-
oxia [236]. Authors mapped lung cell populations in 
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developing (P7) and adult (P60) mice previously exposed 
to hyperoxia for the first 3 days of life and identified per-
sistent changes to AT2 subpopulations, predicting lasting 
perturbations to lung architecture and function [236].

While scRNA-seq studies so far have provided us with 
a somewhat complete map of the postnatally develop-
ing mouse lung, presently only a small portion of data 
derived from these studies have contributed to our 
understanding of BPD pathogenesis. As such, parallel 
studies in humans are still needed and further studies of 
BPD lungs are necessary to improve our interpretation 
of data obtained from animal studies. Finally, additional 
techniques, such as lineage tracing and spatial transcrip-
tomics should be used to complement scRNA-seq to 
further investigate the role of newly identified cell popu-
lations, particularly rare cell subtypes and potential puta-
tive progenitors.

Lung stem/progenitor cells—opportunities to regenerate 
the preterm lung
Lung constitutes a quiescent organ, with the turnover 
time gradually decreasing along the proximal–distal axis 
[237, 238]. Following injury, lung cells are typically acti-
vated by their microenvironment and directed to partici-
pate in remodelling or repair [237, 239, 240]. The same 
injurious stimuli can damage or inhibit stem cells’ ability 
to differentiate, leading to decreased, incorrect, or inap-
propriately timed production of particular cell popula-
tions, contributing to the development of lung disease 
[241]. The role of stem cells in the dysplastic pulmonary 
growth, premature lung aging, and pathogenesis of BPD 
has previously been proposed [241]. However, while 
multiple populations of lung endothelial, epithelial, and 
stromal stem or progenitor cells have been described, 
relatively little is known about their role in late lung 
development or BPD [237]. Particularly of interest are 
questions why resident stem cells lose their function 
and whether it is more feasible to restore their progeni-
tor potential, or rather supplement the injured lung with 
undamaged, exogenous, therapeutic stem cells.

Epithelial stem cells are the most studied putative pro-
genitors in the lung [242–244]. These include proximal 
airways basal cells, secretory cells, bronchial alveolar 
stem cells (BASC), and distal AT2 cells. The fate of the 
progenitor basal cells, characterized by the expression 
of luminal cytokeratin KRT8, seems to be largely guided 
by the NOTCH signaling. Low levels of NOTCH expres-
sion predispose basal cells toward the secretory pheno-
type, while high levels lead to differentiation into goblet 
cells, and the absence of NOTCH results in the ciliated 
phenotype [245–249]. Although the progenitor capacity 
of BASC cells has been demonstrated in mice, their exact 
role in postnatal lung growth and even their existence in 

human lungs still remain controversial [237, 244, 250]. 
On the other hand, the role of distal AT2 cells in lung 
repair is well-established and has been broadly stud-
ied. Lineage-tracing and scRNA-seq studies shown, that 
(alveolar type) AT1 and AT2 cells originate from a com-
mon bipotent progenitor. In humans, the AT1/AT2 pro-
genitors were reported in developing lungs at gestational 
week 15 [230]. Studies in mice suggest that the bipotent 
AT1/AT2 population splits into independent cell lines 
by E18.5 [251, 252]. AT2 cells were repeatedly shown to 
self-renew, differentiate into AT1 cells, and exhibit repair 
capacities even in matured lungs [253–256]. In regard 
to BPD pathogenesis, increased compensatory AT2-to-
AT1 trans-differentiation was shown in the developing 
hyperoxia-exposed rats [257]. Early postnatal hyperoxia-
exposure in mice resulted in reduced AT2 proliferation 
which persisted for up to 2 months [167]. Contradicting 
observations were however made in premature ventilated 
baboons, where AT2 hyperproliferation was observed 
[164], perhaps indicating that the nature, intensity, and 
timing of the injurious stimulus are critical in determin-
ing the way progenitor populations respond. Indeed, the 
molecular mechanisms involved in the AT2 progenitor 
capacity are largely unknown. Among the proposed path-
ways are the WTN, EGFR, and KRAS signaling pathways 
[256, 258]. Further, reports of progenitor-like AT1 cells 
[259] and the AT1-to-AT2 trans-differentiation also exist 
[260], and a specific Hopx+ AT1 population was shown 
to generate new AT2 cells in an adult mice post-pneumo-
nectomy [261]. Finally, the progenitor role of so-called 
respiratory airway secretory cells (RAS) was also recently 
revealed [262]. RAS, which are located in human, but not 
mice proximal airways, differentiate exclusively into AT2 
cells, a process regulated by NOTCH and WNT signal-
ling. While this study explored the potential role of RAS 
in adult lung disease, future studies are needed to reveal 
their role in the neonatal lung.

In comparison to epithelial cells, less is known in 
regard to lung resident endothelial and mesenchymal 
stem cells. The rational for the search for endothelial pro-
genitor cells (EPCs) is based in the hypothesis that the 
lung development is driven by pulmonary vessel forma-
tion [56, 263]. Numerous studies support the existence of 
resident EPCs in the postnatally developing lungs and a 
defective lung vascularization can be found in both, BPD 
patients and animal models of BPD [170, 172, 176, 177]. 
Moreover, inhibition of vessel formation in developing 
animals stunts lung development and results in alveolar 
hypoplasia [172, 264–266]. Importantly, pro-angiogenic 
interventions proved effective in improving lung alveolar-
ization in animal BPD models [172, 267–269]. Reduction 
in number of resident and circulating EPCs was observed 
in murine BPD model [174], and the hyperoxia exposure 
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decreased proliferation in human fetal lung endothelial 
colony-forming cells (ECFCs) in vitro [234]. Importantly, 
intravenously administered human cord blood-derived 
ECFCs were effective in restoring lung function, alveolar 
and vascular growth, and colony-formic capacity of resi-
dent ECFCs in hyperoxia-exposed developing mice [234]. 
Finally, some efforts have recently been made to iden-
tify markers of resident lung EPCs. Among the promis-
ing proposed candidates are above-mentioned markers 
FOXF1 and c-KIT, which expression is decreased in the 
lungs of hyperoxia-exposed rodents and BPD patients 
alike [151, 183].

The best described and most attractive among the 
somatic stem cells are mesenchymal stromal cells 
(MSCs), which can be easily isolated from bone mar-
row (BM-MSCs) or umbilical cord (UC-MSCs). Several 
studies have demonstrated the therapeutic properties of 
exogenous MSCs in experimental BPD, where UC- and 
BM-MSCs restored lung architecture and function, and 
attenuated inflammation and PH in developing rodents 
[270–274]. This evidence prompted further inter-
est in MSC-based cell therapies for BPD and selected 
approaches are currently in early phase clinical tri-
als [275–278]. Besides the cell-based therapies, MSC 
research further encompasses the study of cell-derived 
products, mainly extracellular vesicles (EVs). EVs rep-
resent a heterogenous population with smaller EVs 
(30–100  nm) also being referred to as exosomes [279]. 
Multiple studies have shown their role in cell communi-
cation during both, organ homeostasis and disease [280]. 
Human UC-MSC-derived EVs were shown to improve 
alveolar and vascular development, as well as lung func-
tion and RVH in hyperoxia-exposed developing mice 
[281–283]. Similar results were further observed in stud-
ies employing EVs from amniotic fluid-derived [284] and 
Wharton’s Jelly-derived MSCs [285]. Studies indicate that 
EVs exert their mostly anti-inflammatory effects by pro-
moting an immunosuppressive CCR2-associated mye-
loid cell phenotype [283]. Similarly, antenatal delivery of 
BM-MSCs-derived EVs benefited rats with endotoxin-
induced chorioamnionitis, resulting in reduced cytokine 
levels and improved lung growth and mechanics [286]. 
Finally, UC-MSCs-derived EVs protected lung architec-
ture, vessel formation and inflammatory modulation in 
LPS-injected and mechanically ventilated developing 
mice [287].

In addition to exogenous MSCs, the notion of the resi-
dent lung MSC (L-MSC) population come from reports 
of MSCs in TAs from prematurely born infants, where 
their presence was identified as indicator of BPD mor-
bidity and severity [288–290]. Resident L-MSCs were 
also described in human fetal lungs (gestational week 
15–17) [291] and hyperoxia-exposed developing rodents 

[292, 293]. Hyperoxia exposure increased the number of 
L-MSCs and triggered expression of pro-inflammatory, 
pro-fibrotic, and anti-angiogenic genes [151, 293]. A 
scRNA-seq cell communication analysis revealed inflam-
matory signals from immune populations as main drivers 
of hyperoxia-induced changes in L-MSCs [293]. Impor-
tantly, hyperoxia-exposed human fetal L-MSCs exhibited 
decreased colony-forming capacity [291], while L-MSCs 
isolated from hyperoxia-exposed animals had decreased 
ability to support angiogenesis [292]. Although minimal 
criteria for MSCs characterization have been officially 
established [294], the definition remains rather crude and 
the identification of organ-specific MSCs, including the 
L-MSCs, lacks standardization. As a result, no L-MSC-
specific marker has been accepted to date, although few 
markers have been proposed [292, 293, 295–297]. Nota-
ble among these is LY6A, also known as SCA-1 (stem 
cell antigen 1) [295, 297]. Recent studies have shown that 
L-MSCs may constitute a rather heterogenous popula-
tion and their study might require more advanced meth-
ods, such as scRNA-seq or sc-proteomics [292, 293]. 
Another recently emerging candidate resident MSC 
population are the Gli-1+ repair-supportive mesenchy-
mal cells [298, 299]. Progenitor properties of Gli-1+ cells 
were previously described in other organs, including 
bones [300, 301], teeth [300], and liver [302]. In the lung, 
Gli-1+ cells co-express Acta2, Fgf10 and Pdgfra, thus 
resembling alveolar fibroblasts [225, 298]. In mice Gli-1+ 
MSCs were shown to aid epithelial regeneration follow-
ing naphthalene-induced airway injury [298], and were 
shown to be increased in bleomycin-induced lung fibro-
sis in mice [303]. A more detailed characterization of all 
types of lung resident stem cell populations will clearly 
be of essence in understanding their role in normal and 
impaired lung development and regeneration.

Conclusions
Great advancements in the understanding of BPD patho-
physiology have been made since its first description 
almost 60 years ago. However, prevention and treatment 
of this multifactorial disease still pose major challenges. 
Moreover, most treatment strategies, however lifesaving, 
can contribute to the disease pathogenesis. Because BPD 
occurs in a still developing lung, there is a notable risk 
of life-long adverse effects. Additionally, due to the scar-
city of human material, most of our current knowledge 
derives from experimental animal, mostly rodent models. 
Aberrant immune response, activation of pro-fibrotic and 
anti-angiogenic factors, as well as defects in alveolar and 
capillary formation are among the main features of BPD 
pathogenesis. More recent studies suggest additional 
roles in the development of BPD for maternal obesity, 
second-hand smoking, and pollution. However, no single 
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animal model can fully replicate the complex nature of 
BPD. Therefore, how exactly do the prenatal and post-
natal factors interrelate during the development of BPD, 
effect patients’ recovery, and possibly contribute to the 
susceptibility to pulmonary diseases in later life remains 
unknown. Finally, the heterogenous nature of pulmo-
nary cellular landscape represents a great challenge when 
identifying individual effector cells, particularly rare pro-
genitors. Future novel multi-omics and interdisciplinary 
approaches will allow for more in-depth identification of 
rare cell types, cellular dynamics, and novel biomarkers. 
This knowledge will further enable development of more 
personalized therapeutics relevant to disease prevention, 
as well as acute and long-term organ repair. 
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