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Abstract 

Podocytes are differentiated epithelial cells which play an essential role to ensure a normal function of the glomerular 
filtration barrier (GFB). In addition to their adhesive properties in maintaining the integrity of the filtration barrier, they 
have other functions, such as synthesis of components of the glomerular basement membrane (GBM), production of 
vascular endothelial growth factor (VEGF), release of inflammatory proteins, and expression of complement compo-
nents. They also participate in the glomerular crosstalk through multiple signalling pathways, including endothelin-1, 
VEGF, transforming growth factor β (TGFβ), bone morphogenetic protein 7 (BMP-7), latent transforming growth factor 
β-binding protein 1 (LTBP1), and extracellular vesicles.

Growing literature suggests that podocytes share many properties of innate and adaptive immunity, supporting a 
multifunctional role ensuring a healthy glomerulus. As consequence, the “immune podocyte” dysfunction is thought 
to be involved in the pathogenesis of several glomerular diseases, referred to as “podocytopathies.” Multiple factors 
like mechanical, oxidative, and/or immunologic stressors can induce cell injury. The complement system, as part 
of both innate and adaptive immunity, can also define podocyte damage by several mechanisms, such as reactive 
oxygen species (ROS) generation, cytokine production, and endoplasmic reticulum stress, ultimately affecting the 
integrity of the cytoskeleton, with subsequent podocyte detachment from the GBM and onset of proteinuria.

Interestingly, podocytes are found to be both source and target of complement-mediated injury. Podocytes express 
complement proteins which contribute to local complement activation. At the same time, they rely on several protec-
tive mechanisms to escape this damage. Podocytes express complement factor H (CFH), one of the main regulators 
of the complement cascade, as well as membrane-bound complement regulators like CD46 or membrane cofactor 
protein (MCP), CD55 or decay-accelerating factor (DAF), and CD59 or defensin. Further mechanisms, like autophagy or 
actin-based endocytosis, are also involved to ensure podocyte homeostasis and protection against injury.

This review will provide an overview of the immune functions of podocytes and their response to immune-mediated 
injury, focusing on the pathogenic link between complement and podocyte damage.
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Background
Podocytes are highly specialized epithelial cells of the 
glomerulus and represent a major component of the GFB 
[1]. They have a complex architecture including a large 
cell body facing the urinary space and an interdigitating 
network of extensions (primary and secondary processes) 
terminating as (tertiary) foot processes on the GBM [2].

Normal podocyte function is guaranteed by a sophis-
ticated actin cytoskeleton, mainly localized within the 
foot processes [3]. Podocytes are characterized by a 
highly complex architecture regulated by multiple pro-
teins, grouped into two main podocyte structures: the 
slit diaphragm (SD) and focal adhesions (FA). The SD is 
a unique highly specialized cell–cell junction between 
two podocyte foot processes (Fig. 1), including key pro-
teins like nephrin, podocin, or synaptopodin [4, 5]. The 
SD represents not only a size-selective barrier to prevent 
filtration of large macromolecules but also a signalling 
platform with critical functions, such as regulation of the 
actin cytoskeleton and initiation of signalling pathways 
to modulate the plasticity of foot processes [6]. FA are 
complex structures which are able to connect the actin 
cytoskeleton of foot processes to the GBM, thanks to two 
main molecular components: integrins and GTPases.

Besides contributing to the GFB, podocytes play 
important functions such as synthesis and repair of the 
GBM (together with endothelial cells), production of 

VEGF, and platelet-derived growth factor (PDGF) [6–9]. 
Moreover, growing literature suggests that podocytes 
have many functions of the innate and adaptive immune 
systems [10–13]. They express cytokine and chemokine 
receptors to respond to a variety of soluble mediators. 
They are also able to synthesize inflammatory media-
tors, such as interleukin-1 (IL-1), which may contribute 
to local inflammation. Evidence in literature suggests 
a possible role in the adaptive immune system too, as 
antigen-presenting cells (APC) to initiate specific T-cell 
responses, like dendritic cells or macrophages [14, 15].

Furthermore, podocytes express several complement 
components, such as complement receptor type 1 (CR1) 
and type 2 (CR2) and complement regulators like CD46, 
CD55, or CD59, and they can produce complement pro-
teins locally, including complement component 3 (C3) 
and CFH [16–18]. Nevertheless, the role of comple-
ment components expressed or secreted by podocytes in 
regulation of the local complement reaction is not fully 
understood.

Podocyte injury is involved in the pathophysiology of 
several glomerular diseases, like immune-complex glo-
merulonephritis, minimal change disease (MCD), focal 
segmental glomerulosclerosis (FSGS), and collapsing glo-
merulopathy [19, 20], and evidence from the literature 
suggests that the complement system could be primary 
or secondary involved in the podocyte damage [21–23].

Fig. 1 Main components of the slit diaphragm and podocyte-endothelial cell cross talk in healthy versus damaged podocytes. Podocyte slit 
diaphragm, glomerular basement membrane (GBM), and endothelial cells are the main components of the glomerular filtration barrier. Podocyte 
effacement/detachment, secondary to mechanical, oxidative, and/or immunologic triggers, is characterized by loss of silt diaphragm integrity, 
disruption of actin cytoskeleton and focal adhesions, and interruption of the physiological podocyte-endothelial cell cross talk (dashed arrows). 
Abbreviations: GBM, glomerular basement membrane; Ang, angiopoietin; ANGPTL, angiopoietin-like protein; IGF, insulin-like growth factor; 
IGFBP-rP1, insulin-like growth factor-binding protein-related protein 1; ET-1, endothelin-1; HGF, hepatocyte growth factor; IL-1, interleukin-1; NO, 
nitric oxide; TNF-a, tumor necrosis factor-a; VEGF, vascular endothelial growth factor
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The immune podocyte: innate and adaptive 
functions
Increasing evidence suggests that podocytes play a role 
in the innate immune response because of their expres-
sion of Toll-like receptors (TLRs), especially TLR4, a 
subtype able to recognize bacterial lipopolysaccharide 
(LPS). Those receptors are upregulated in animal models 
of cryoglobulinemic membranoproliferative glomerulo-
nephritis, and they could mediate glomerular damage by 
modulating expression of chemokines [12].

TLRs are located on the cell surface or intracellularly 
and can be expressed by different types of cells, such as 
dendritic cells, macrophages and monocytes, fibroblasts, 
B and T cells, and endothelial and epithelial cells. They 
play an essential role by recognizing pathogen-associ-
ated molecular patterns; in particular, cell surface TLRs 
can mainly recognize microbial membrane components 
such as LPS, lipids, and proteins, while intracellular TLRs 
mainly recognize nucleic acids from bacteria and viruses 
[24]. In addition, TLRs can be activated by endogenous 
ligands released during stress or tissue injury, such as 
heat shock proteins, mRNA, and necrotic debris [25]. 
Cultured human podocytes constitutively express cell 
surface TLRs (i.e., TLR1, 2, 3, 4, 5, 6, and 10) [26], sug-
gesting a possible role in the defense against microbial 
agents; however, de novo expression of intracellular 
TLRs subtype has also been reported in podocytes of 
patients with glomerular disease. In particular, puromy-
cin aminonucleoside (PAN), commonly used to induce 
a nonimmune podocyte injury in  vitro, can upregulate 
TLR9 intracellular expression and activate NF-κB and 
p38 MAPK in human immortalized podocytes, utilizing 
endogenous mtDNA as TLR9 ligand to facilitate podo-
cyte apoptosis [27]. This would suggest a bivalent role of 
TLRs in podocytes, both as major players in response to 
foreign pathogens and mediators of podocyte damage.

Moreover, podocytes can express MHC class I and II 
genes [28, 29], as well as B7-1 (or CD80, involved in T-cell 
activation) [15, 30] and FcRn (IgG and albumin transport 
receptor, used by podocytes to internalize IgG from the 
GBM) [31, 32]. In particular, MHC class II expression on 
podocytes is required for the development of immune-
mediated renal injury, as MHC II presentation by podo-
cytes is necessary to induce the CD4 + T-cell-driven 
glomerular disease [14]. It is reported that these cells can 
act as antigen-presenting cells (APC), as they can express 
several macrophagic-associated markers [33, 34], and 
they are able to process antigens to initiate specific T-cell 
responses [15], supporting their multifunctional role in 
the immunological pathogenesis of glomerular diseases.

Furthermore, expression of functional chemokine 
receptors (CCR4, CCR8, CCR9, CCR10, CXCR1, CXCR3, 

CXCR4, and CXCR5) has been demonstrated in cultured 
human podocytes [35, 36]. Chemokines are small che-
moattractant cytokines released by innate immune cells 
(i.e., neutrophils, eosinophils, macrophages, dendritic 
cells, natural killer cells), as well as endothelial and epi-
thelial cells. They play a central role in inflammation and 
immune cell recruitment by guiding circulating leuko-
cytes to inflammation or damage site [37, 38]. They also 
promote cell growth and tumor angiogenesis and are 
able to modulate apoptosis by binding G-protein-cou-
pled receptors (GPCRs) on the surface of immune cells. 
Chemokine receptors are expressed in leukocytes, as well 
as non-hemopoietic cells, such as endothelial and epithe-
lial cells [39].

CXCR1, CXCR3, and CXCR5 chemokine receptors 
have been identified in podocytes from kidney biopsies of 
patients with primary membranous nephropathy (PMN), 
while they were not expressed in healthy kidneys. Huber 
et  al. suggested that podocyte CXCRs activation may 
contribute to GFB disruption and onset of proteinuria in 
PMN through hyperactivation of NADPH oxidases and 
oxygen radicals production [36].

Podocytes are involved in the inflammatory response 
of several human glomerulopathies, as suggested by 
their ability to produce pro-inflammatory cytokines like 
IL-1α and IL-1β [40, 41]. It has been reported that they 
can express inflammasome components, like NOD-like 
receptor (NLR) family proteins, which contribute to 
inflammatory response in the local kidney in primary 
glomerular diseases like lupus nephritis (LN) [42].

Podocytes are also known to secrete and/or express 
several complement proteins and regulators, suggest-
ing local activation of the complement cascade. Expres-
sion of complement genes, including C1q, C1r, C2, C3, 
C3a receptor (C3aR), C5a receptor (C5aR), C7, CR1, and 
CR2, has been detected in cultured podocytes under 
normal physiological conditions, with increased local 
synthesis of complement proteins following podocyte 
injury [16, 17]. On the other side, complement regula-
tors have been identified too, both membrane-bound 
(CD46, CD55, CD59) and soluble (CFI and CFH) forms. 
In particular, podocytes can express CFH locally to clear 
subendothelial immune complex deposits [43]. The fact 
that podocytes are able to produce complement compo-
nents, including regulators, might have a relevant impact 
on podocytopathies where the complement system plays 
a pathogenic role. The balance between local comple-
ment activation and regulation is important to maintain 
the glomerular environment, as podocytes could become 
both target and source of injury, contributing to local 
complement activation and amplifying their own damage 
[44, 45].
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A summary of the main immune functions of podo-
cytes are summarized in Table 1.

Podocyte and complement system
The complement system, classically described as part 
of the innate immune system, represents indeed a func-
tional bridge between innate and adaptive immunity. It 
consists of more than 30 plasma or membrane-anchored 
proteins and regulators which play a role in inflamma-
tion, opsonization and lysis of pathogens, clearance of 
apoptotic cells, and enhancement of both innate and 
adaptive immunity [46–48]. It can be activated by three 
different pathways, the classical, the lectin, and the alter-
native pathway [49, 50], which are tightly regulated by 
several complement components, like the membrane-
bound proteins CD46, CD55, and CD59 and the soluble 
CFH, to prevent uncontrolled complement hyperactiva-
tion [51]. All three pathways induce a proteolytic cascade 
leading to a shared terminal pathway with subsequent 
membrane attack complex (MAC) assembly in the cell 
plasma membrane. Once inserted in the lipid bilayer, 
MAC forms a stable pore with ~ 10  nm diameter gen-
erating several intracellular signals, which have been 

characterized by both in vivo and in vitro models as sum-
marized in Table 2 [52].

Sublytic effects of complement activation on podocytes
Mechanical, oxidative, and immunologic stress can cause 
podocyte damage and subsequently affect the integrity of 
glomerular barrier. Complement activation with sublytic 
MAC formation on podocytes is an example of immu-
nologic stress, which can trigger downstream pathways 
including protein kinases, lipid metabolism, cytokine 
production, ROS generation, growth factor signal trans-
duction, endoplasmic reticulum stress, and the ubiqui-
tin–proteasome system, eventually leading to disruption 
of the podocyte actin cytoskeleton and subsequent cell 
detachment [53].

More in details, evidence suggests that sublytic amount 
of MAC on the podocyte surface can induce calcium 
influx through the membrane pore, as well as calcium 
release from the intracellular storages, eventually lead-
ing to increased intracellular calcium which can activate 
multiple pathways, such as protein kinase signalling, 
and in particular protein kinases C (PKC) responsible 
for membrane vesiculation and internalization of MAC 

Table 1 Summary of (potential and recognized) podocyte immune functions

Abbreviations: PMN primary membranous nephropathy, FcRn neonatal Fc receptor, VEGF vascular endothelial growth factor, NOD nucleotide-binding and 
oligomerization domain, NF-κB nuclear factor-κB, MAPK mitogen-activated protein kinase

Molecules Expression Immune function and possible 
implications

References

CD80 (or B7-1)/CD86
Class I/II MHC

Cultured human podocytes can express 
antigen-presenting cell molecules

Activation of specific T-cell immune 
responses in renal diseases

[14, 15, 28–30, 33, 34]

Chemokine receptors (CCR and CXCR) CCR4, CCR8, CCR9, CCR10, CXCR1, CXCR3, 
CXCR4, and CXCR5 are expressed in cul-
tured human podocytes
CXCR1, CXCR3, and CXCR5 have been iden-
tified on podocytes from kidney biopsies 
of PMN patients

Possible pathogenic role in acute and 
chronic glomerular inflammation
NADPH-oxidases hyperactivation and ROS 
production — possible contribution to 
glomerular filtration barrier damage, and 
onset of proteinuria

[12, 35–39]

Complement system components Cultured human podocytes can produce 
and express complement components, 
including regulators

Possible local activation of the comple-
ment cascade

[16, 17, 43]

FcRn Both in vitro and in vivo podocytes express 
FcRn

IgG clearance from the glomerular base-
ment membrane, albumin recycling

[31, 32]

Cytokines/growth factors/inflamma-
sone components

Both in vitro and in vivo podocytes 
produce cytokines and growth factors (i.e., 
TNF-α, IL-1α and β, IL-6, IL-8, VEGF). They 
can also express inflammasome compo-
nents (NOD-like receptor family proteins)

Possible role in the local inflammatory 
response in glomerular diseases

[40–42]

Toll-like receptors (TLRs) Constitutive expression of cell surface TLRs 
has been identified on cultured human 
podocytes
De novo expression of intracellular TLRs 
has been detected in podocytes of 
patients with glomerular disease (upregu-
lation of intracellular TLR9 with activation 
of NF-κB/p38 MAPK)

Possible role in the defense against micro-
bial agents
Possible role in immune response and 
glomeruli inflammation

[12, 13, 24–26]



Page 5 of 9Bruno et al. Molecular and Cellular Pediatrics            (2023) 10:3  

channels [52, 54–57], as suggested by reduction of MAC 
endocytosis by inhibiting PKC pathway [58].

It is well known that  Ca2+ signalling in healthy podo-
cytes is mainly mediated by angiotensin II and TRPC5 
and 6 (nonselective cationic channels, downstream of 
angiotensin II signalling) [59]; interestingly, TRPC6 can 
play a dual role, as it has been shown that acute activa-
tion of this channel is able to protect podocytes from 
complement-mediated injury, while gain-of-function 
mutations/chronic hyperactivation can affect the SD 
and/or foot processes morphology leading to glomerular 
diseases, such as FSGS [60].

It has also been described that sublytic MAC can 
induce transactivation of receptor tyrosine kinases at the 
plasma membrane of cultured podocytes, resulting in 

activation of the Ras-extracellular signal-regulated kinase 
(ERK) pathway and phospholipase C-γ1. Transactivated 
receptor tyrosine kinases could play as scaffold for pro-
teins assembly and/or activation, inducing activation of 
downstream pathways, either dependently or indepen-
dently the increased cytosolic calcium levels [54, 61].

Other pathways activated by MAC formation on podo-
cyte surface involve arachidonic acid (AA) release by 
cytosolic phospholipase A2-α (cPLA2), inducing AA 
metabolism to prostanoids, as described by Cybulsky 
et  al. [62]. Eicosanoids can play a role in complement-
mediated podocyte injury, as supported by experimental 
models of membranous nephropathy. Despite the exact 
mechanisms of glomerular damage are still unclear, cyto-
toxic consequences of cPLA2 activation could include 

Table 2 Signalling pathways activated by MAC (adapted from Takano et al. (2013). Seminars in Nephrology. Reference [52]

Abbreviations: MAC membrane attack complex, PKC protein kinase C, RTK receptor tyrosine kinase, Ras-ERK Ras-extracellular signal regulated kinase, JNK c-Jun 
N-terminal kinase, ASK1 apoptosis signal-regulating kinase-1, HN Heymann nephritis, cPLA2 cytosolic phospholipase A2, iPLA2-γ independent PLA2-γ, AA arachidonic 
acid, NADPH nicotinamide-adenine dinucleotide phosphate, ROS reactive oxygen species, HB-EGF heparin-binding epidermal growth factor-like factor, Ret glial cell-
derived neurotrophic factor receptor tyrosine kinase, CDK cyclin-dependent kinase, NF-κB nuclear factor-κB, GADD45 growth-arrest DNA damage-45, ER endoplasmic 
reticulum, PERK protein kinase R-like ER kinase, TRPC6 transient receptor potential channel 6, PI3K phosphatidylinositol 3-kinase, Akt protein kinase B, Bad BCL2-
associated agonist of cell death, Bcl-XL B-cell lymphoma-extra large, cFLIPL cellular FLICE-inhibitory protein long form, FasL Fas ligand

Pathway Effects of terminal pathway activation

Intracellular calcium Calcium influx through MAC and calcium release from intracellular storage sites

Protein kinases Activation of protein kinase C (PKC), receptor tyrosine kinase (RTK), Ras-ERK, JNK, p38, and ASK1 (HN)

Phospholipases Activation of phospholipase C (PLC)-γ1, cPLA2, and iPLA2-γ (phosphorylation), and AA release

Prostanoids Upregulation of cyclooxygenase (COX)-2 (cultured podocytes and HN glomeruli) and COX-1 (HN glomeruli), produc-
tion of prostanoids

ROS Superoxide production via NADPH oxidase and lipid peroxidation (HN)
ROS production via xanthine oxidase pathway (HN)
Generation of hydrogen peroxide by cytochrome P450 family of hemeprotein monooxygenases (cultured podocytes)

Growth factors Upregulation of platelet-derived growth factor B-chain, HB-EGF (HN), and Ret (HN and cultured mouse podocytes)
Increase of p21 and p27 CDK inhibitors and decrease of CDK2 activity
Decrease of p57 and increase of Cdc2, cyclins B1, B2, and D1 and phosphorylated histone-3

Transcription factors
DNA damage

Activation of NF-κB (cultured podocytes and in vivo)
Production of interleukin-8 and monocyte chemoattractant protein-1
Increase of p21, p53, GADD45, and checkpoint kinase-1 and kinase-2 (cultured podocytes and HN)

Endocytosis
Ectocytosis

Endocytosis (podocyte)
Ectocytosis in membrane vesicles (urinary space)

ER stress Damage of ER membrane and unfolded protein response induction
Upregulation of ER chaperones, PERK stimulation, eukaryotic translation initiation factor-2α subunit phosphorylation, 
and reduction of protein synthesis

Ubiquitin–proteasome system Polyubiquitination of glomerular proteins (HN)
Upregulation of ubiquitin proteasome system (cultured podocytes)

Podocyte cytoskeleton Disassembly of F-actin filaments and focal adhesion complexes
Increase of RhoA and decrease of Rac1 and Cdc42 activities (cultured podocytes)
Foot process effacement by induction of active RhoA in podocytes (in mice)
TRPC6 upregulation (cultured podocytes)

Slit diaphragm Decrease of nephrin mRNA and protein (HN)
Dissociation of nephrin from actin cytoskeleton and loss of slit diaphragm integrity
Alteration of podocin location and nephrin dissociation from podocin

Cell cycle Increased DNA synthesis without cell proliferation (podocyte)

Anti-apoptosis PI3K/Akt activation, Bad phosphorylation, and dissociation of the Bad/Bcl-XL complex
Upregulation of caspase-8 inhibitor and cFLIPL and downregulation of FasL

Pro-apoptosis DNA damage via apoptosis regulating proteins (podocytes)
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release of free fatty acids and lysophospholipids, as well 
as ions influx, which could ultimately affect the energy 
machinery [63].

ROS production has also been described in podocytes 
exposed to sublytic amounts of MAC; both cultured and 
in  vivo podocytes express components of the NADPH 
oxidase, a complex enzyme able to reduce molecular oxy-
gen to the superoxide anion, which is further metabo-
lized to other ROS [52]. Lipid peroxidation and changes 
in the podocyte membrane composition, as well as in the 
GBM components, have been reported as consequence 
of ROS production. Moreover, inhibition of ROS and/
or lipid peroxidation resulted in reduced proteinuria in 
animal models of membranous nephropathy, suggesting 
their pathogenic role in glomerular damage [64].

Endoplasmic reticulum (ER) stress with accumula-
tion of misfolded proteins and subsequent increase of 
the ubiquitin–proteasome system has been reported as 
additional response to complement-mediated injury, as 
possible protective response of podocytes to ongoing 
complement attack [65].

Sublytic MAC deposition on podocytes can also induce 
DNA damage, both in vitro and in vivo models, as dem-
onstrated by Pippin et al. [66]. The authors also described 
that sublytic MAC-induced podocyte injury was associ-
ated with an increase in specific cell cycle-related genes, 
including p53, p21, growth-arrest DNA damage-45, and 
checkpoint kinase-1 and 2, leading to cell cycle arrest 
and podocyte growth suppression. This could explain 
why podocyte proliferation is limited following immune-
mediated injury.

Consequences of complement activation on podocyte 
energy metabolism
The effects of complement activation on podocyte energy 
machinery are not fully understood. Brinkkoetter et  al. 
demonstrated that podocyte metabolism is somewhat 
different from other type of cells, as it primarily relies on 
anaerobic glycolysis and the transformation of glucose to 
lactate [67]. More in details, the authors showed a sig-
nificantly lower mitochondrial density per cell area, com-
pared to other type of renal cells (i.e., renal tubular cells). 
Also, glomeruli stained for mitochondrial enzyme super-
oxide dismutase 2 (SOD2) and the glycolytic enzyme 
pyruvate kinase M2 (PKM2) confirmed the perinuclear 
localization of mitochondria (and their almost com-
plete absence in secondary and tertiary processes), while 
PKM2 was ubiquitous, suggesting podocyte processes 
as a large compartment of anaerobic glycolysis. They 
also used Tfam (mitochondrial transcription factor A) 
knockout mice to demonstrate that loss of mitochondrial 
transcription and lack of the oxidative phosphorylation 
machinery do not induce podocyte disease. In addition, 

transient knockdown of Tfam in human podocytes sig-
nificantly reduced mitochondrial respiration, while 
anaerobic glycolysis was significantly increased allowing 
a normal podocyte function.

It has been demonstrated that sublytic complement-
mediated injury induces reduction of intracellular ATP, 
in addition to reversible disruption of actin stress fib-
ers and focal adhesions, mainly due to dephosphoryla-
tion (instead of degradation) of focal contact proteins, as 
described by Topham et al. using an in vitro model of rat 
podocytes [68]; however, the precise mechanisms need to 
be clarified. Also, complement activation on podocytes 
can cause nephrin dissociation from the actin cytoskel-
eton with disruption of the slit diaphragm, GFB damage, 
and subsequent onset of proteinuria, as suggested by the 
Heymann nephritis (HN) model [54, 61].

Complement‑mediated injury and podocyte response
Podocytes rely on several adaptive mechanisms to miti-
gate complement-mediated injury. Autophagy, a highly 
conserved mechanism of lysosome-mediated degrada-
tion of damaged organelles or nonfunctional proteins, is 
enhanced after sublytic complement damage in mouse 
podocytes, whereas its inhibition amplifies complement-
mediated cell injury [69]. Liu et al. investigated the role 
of autophagy in PMN, comparing podocytes from PMN 
patients to cultured mouse podocytes exposed to sublytic 
complement activity, and they found impaired autophagy 
in podocytes from PMN patients, characterized by 
intracellular accumulation of p62 (marker of impaired 
autophagy) and increase in autophagic vacuoles [70].

Podocyte-derived VEGF has also a bivalent function, 
as it is described that its overexpression can cause a col-
lapsing glomerulopathy, while its inhibition is associated 
with GFB disruption, proteinuria, and possible develop-
ment of thrombotic microangiopathy as well [71]. The 
putative mechanism is that, in normal conditions, VEGF 
signalling can regulate complement activity on podocytes 
and protect them from complement-mediated injury by 
increasing local CFH production, while its inhibition 
would provoke reduced levels of CFH, and podocytes 
would become more vulnerable to the injury.

More recently, new interesting mechanisms have been 
described to protect podocytes from injury, as reported 
by Medica et  al. using a co-culture model of glomeru-
lar endothelial cells and podocytes. In particular, they 
demonstrated that extracellular vesicles derived from 
endothelial progenitor cells and involved in intercellular 
crosstalk (by transferring of proteins, lipids, and genetic 
material) are able to protect both glomerular endothe-
lial cells and podocytes from complement (C5a)- and 
cytokine-mediated injury [72]. In particular, they showed 
that pre-stimulation of endothelial cells with extracellular 
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vesicles prevented podocyte apoptosis and GFB disrup-
tion, and this protective effect could be mainly secondary 
to RNA transfer from the extracellular vesicles to dam-
aged endothelial cells and podocytes.

Despite a tight surveillance of the complement system, 
including the activity of soluble and membrane-bound 
regulators, together with the protective mechanisms 
previously described to escape the injury, unrestricted 
complement activation can exceed those regulatory 
mechanisms, causing host tissue injury, as reported 
in various diseases including glomerulonephritis [73], 
hemolytic uremic syndrome (HUS) [74], sepsis [75], 
systemic lupus erythematosus [76], rheumatoid arthri-
tis [77], organ transplant rejection [78], and age-related 
macular degeneration [79].

Summary and conclusions
Podocytes play a critical role to ensure the glomerular 
homeostasis. Over the years, growing literature high-
lighted the multiple and complex biological functions of 
these pericytes-like epithelial cells, which are much more 
than a supporting component of the GFB [1, 80–82].

Several authors described them as “immune podo-
cytes,” to underline their properties as both innate and 
adaptive immune cells [10, 13, 15]. Understanding their 
complex biology is essential to unravel the pathogenic 
mechanisms of several glomerular diseases, where podo-
cyte injury represents a common denominator.

The role of the complement system in podocyte injury 
has also been evaluated in a multitude of kidney disor-
ders, such as membranous nephropathy, lupus nephritis, 
HUS, FSGS, and several more [45, 83–90]. The effects of 
complement activation on podocytes can vary based on 
the disease pathophysiology, as well as based on the initial 
trigger, which could induce lytic versus sub-lytic effects. 
Interestingly, podocytes have developed several protective 
mechanisms to escape the complement attack, such as 
autophagy, internalization mechanisms like endocytosis, 
and expression of complement regulators, and the balance 
between injury and defense mechanisms can ultimately 
determine the destiny of the podocyte cell [65, 69, 91].

Future studies, both in  vitro and in  vivo, are needed 
to better understand the role of complement activation 
in podocytopathies and the rationale for the use of anti-
complement therapies in conditions where the comple-
ment system appears as main driver of the disease.

Abbreviations
APC  Antigen-presenting cells
ATP  Adenosine triphosphate
BMP7  Bone morphogenetic protein 7
C1q  Complement component 1q
C1r  Complement component 1r

C1s  Complement component 1 s
C2  Complement component 2
C3  Complement component 3
C3a  Complement component 3a
C3aR  Complement component 3a receptor
C4  Complement component 4
C5a  Complement component 5a
C5aR  Complement component 5a receptor
C6  Complement component 6
C7  Complement component 7
CCR4  CC chemokine receptor 4
CCR8  CC chemokine receptor 8
CCR9  CC chemokine receptor 9
CCR10  CC chemokine receptor 10
CD80  Cluster of differentiation 80
CFH  Complement factor H
CFI  Complement factor I
cPLA2  Cytosolic phospholipase A2
CR1  Complement receptor type 1
CR2  Complement receptor type 2
CXCR1  CXC chemokine receptor 1
CXCR3  CXC chemokine receptor 3
CXCR4  CXC chemokine receptor 4
CXCR5  CXC chemokine receptor 5
DAF  Decay-accelerating factor
ERK  Ras-extracellular signal-regulated kinase
FA  Focal adhesions
FcRn  Neonatal Fc receptor
FSGS  Focal segmental glomerular sclerosis
GBM  Glomerular basement membrane
GFB  Glomerular filtration barrier
GPCR  G-protein-coupled receptor
HN  Heymann nephritis
HUS  Hemolytic uremic syndrome
IL-1α  Interleukin-1α
IL-1β  Interleukin-1β
LN  Lupus nephritis
LTBP1  Latent transforming growth factor β-binding protein 1
MAC  Membrane attack complex
MAPK  Mitogen-activated protein kinase
MCD  Minimal change disease
MCP  Membrane cofactor protein
MHC  Major histocompatibility complex
NADPH  Nicotinamide adenine dinucleotide phosphate
NF-κB  Nuclear factor kappa-light-chain-enhancer of activated B cells
NLR  NOD-like receptor
PAN  Puromycin aminonucleoside
PDGF  Platelet-derived growth factor
PKC  Protein kinase C
PMN  Primary membranous nephropathy
PKM2  Pyruvate kinase M2
ROS  Reactive oxygen species
SD  Slit diaphragm
SOD2  Superoxide dismutase 2
Tfam  Mitochondrial transcription factor A
TGFβ  Transforming growth factor β
TLRs  Toll-like receptors
TRPC5  Transient receptor potential canonical 5
TRPC6  Transient receptor potential canonical 6
VEGF  Vascular endothelial growth factor
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