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Long noncoding RNAs as regulators 
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Abstract 

Long noncoding RNAs (lncRNAs) are increasingly emerging as regulators across human development and disease, 
and many have been described in the context of hematopoiesis and leukemogenesis. These studies have yielded new 
molecular insights into the contribution of lncRNAs to AML development and revealed connections between lncRNA 
expression and clinical parameters in AML patients. In this mini review, we illustrate the versatile functions of lncRNAs 
in AML, with a focus on pediatric AML, and present examples that may serve as future therapeutic targets or predic‑
tive factors.
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Background
Acute myeloid leukemia (AML) accounts for approxi-
mately 20% of acute leukemias in children [1]. Although 
the overall survival of children with AML has sig-
nificantly increased as a result of intensified therapy, 
hematopoietic stem cell transplantation, and improved 
supportive care over the past decades, around 25% of 
all patients still cannot be cured [2] — highlighting the 
urgent need to transfer discoveries about the molecu-
lar features of pediatric AML into new therapeutic 
approaches. Among the recent scientific developments 
in this field, comprehensive studies have revealed that 
the molecular landscape of childhood AML is shaped 
not only by oncogenic mutations and cytogenetic altera-
tions but also by global changes in DNA methylation and 
gene expression affecting both protein-coding genes and 
noncoding RNAs [3, 4]. Noncoding RNAs in particular 
are emerging as important regulators of hematopoiesis 
and leukemogenesis and represent a largely understudied 
space in the search for new therapeutic strategies.

Long noncoding RNAs (lncRNAs) — defined as tran-
scripts longer than 200 nucleotides that lack open read-
ing frames — represent the largest group of noncoding 

RNAs and constitute two-thirds of the human transcrip-
tome [5]. Different structural domains enable their inter-
action with RNA, DNA, and proteins and thereby allow 
the regulation of every stage of gene expression. Apart 
from their versatile roles in gene regulation on every pos-
sible transcriptional and posttranscriptional level, lncR-
NAs can directly interact with signaling pathways and 
contribute to the function of organelles such as exosomes 
or mitochondria.

Molecular mechanisms and functions of lncRNAs
Based on the mechanistic interaction of lncRNAs with 
other molecules, four different archetypes of lncRNA 
functions — namely signal, decoy, guide, and scaffold 
— have been defined in a seminal work by Wang and 
Chang in 2011 [6]. As the first archetype, signal lncR-
NAs, which are under precise transcriptional control, act 
as a molecular signal reflecting a specific developmen-
tal stage, cellular background, or a response to stimuli 
[6–9]. LncRNAs belonging to the second archetype, 
decoy, bind and titrate away regulatory proteins or RNAs, 
thereby repressing transcription or translation of a target 
gene [10, 11]. Guide lncRNAs, which represent the third 
mechanistic archetype, direct regulatory protein com-
plexes, chromatin modifiers, or transcription factors to 
their target site, resulting in either transcriptional acti-
vation or repression of the respective genomic locus [12, 
13]. The fourth archetype, scaffold, describes lncRNAs as 
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a structural platform at which different bound compo-
nents of protein complexes or ribonucleoprotein com-
plexes are assembled or can interact with each other [14, 
15]. Even though increasing evidence now points toward 
complex lncRNA mechanisms that represent rather coex-
isting or overlapping features of the four classical arche-
types, these four mechanistic subtypes still illustrate the 
wide range of possible modes of action of lncRNAs.

Nuclear-localized lncRNAs can exert independent 
regulatory effects on neighboring genes (function in 
cis) as well as on distant genes (function in trans), while 
cytoplasmic lncRNA mechanisms include competitive 
miRNA binding and interaction with translational pro-
teins [16]. The most commonly demonstrated function of 
cis-acting nuclear lncRNAs, which are operating at their 
own site of transcription, is regulation of gene expres-
sion and chromatin modification [17]. The participation 
of cis-acting lncRNAs in transcriptional processes is sup-
ported by the high abundance of lncRNA genes in the 
proximity of regulatory elements of the human genome 
such as enhancers and promotors [18]. Protein-coding 
genes that are involved in transcriptional regulation, 
e.g., genes encoding transcription factors or chromatin 
modifiers, show a higher enrichment of closeby lncRNA 
genes than protein-coding genes of other functional 
categories, further indicating an essential contribution 
of cis-acting lncRNAs to the regulation of gene expres-
sion [19]. LncRNAs can act in cis to either activate or 
repress the expression of nearby genes through a vari-
ety of mechanisms. For instance, lncRNAs can activate 
gene expression in cis by recruiting proteins that estab-
lish spatial interactions such as chromatin loops, thereby 
enabling closer contact of an enhancer to the respective 
protein-coding gene [20, 21]. Other lncRNAs have been 
shown to activate gene expression of their target genes in 
cis in an transcript-independent manner by the process 
of their own transcription and splicing through recruit-
ing cofactors, accumulation of transcriptional proteins, 
and establishing of activating chromatin marks [22, 23]. 
Conversely, cis-acting lncRNAs can also recruit chroma-
tin modifiers that repress transcriptional activity at their 
genomic locus, such as the polycomb repressive com-
plex 2 [24, 25]. Another lncRNA mechanism that results 
in decreased expression of the neighboring target gene 
is transcriptional interference: The transcription of a 
lncRNA can interfere with the transcription of the adja-
cent gene by impeding recruitment of necessary proteins 
such as transcription factors and chromatin remodeling 
proteins or by increasing nucleosome density, thereby 
preventing transcription factor access [26, 27]. For trans-
acting lncRNAs, diverse functions in the modulation of 
distant gene expression have been demonstrated, with 
most of the studied examples exhibiting mechanisms 

that have been also described in the context of cis-acting 
lncRNAs. For instance, lncRNAs can facilitate transcrip-
tional activation of distant target genes by the initia-
tion of chromatin loop formation [28]. Similarly, several 
lncRNAs have been shown to repress transcription of 
target genes in trans through recruitment of chromatin-
modifying complexes [7, 9, 29]. Another mechanism that 
has been described for cis-acting lncRNAs as well as for 
trans-acting lncRNAs is the formation of RNA-DNA 
hybrids, the so-called R-loops, that are recognized by 
transcription factors or chromatin modifiers and thereby 
lead to the activation or repression of transcription of the 
target gene [30].

Given their versatile cellular and molecular functions, it 
is no surprise that lncRNAs are involved in many essen-
tial physiological processes such as genomic imprinting 
and differentiation, as well as in the pathogenesis of dis-
eases such as cancer, neurodegenerative disorders, and 
metabolomic diseases [31–33].

LncRNAs in hematopoiesis and AML
Hematopoietic differentiation is a tightly regulated, hier-
archically ordered process coordinated by the expres-
sion of specific gene programs. Numerous lncRNAs 
have been characterized in the context of hematopoiesis 
including lncRNAs that are involved in hematopoietic 
fate decision and lncRNAs whose deregulation contrib-
utes to the malignant transformation of hematopoietic 
progenitor cells [34]. Recent studies identified unique 
stage- and lineage-specific lncRNA signatures in distinct 
blood cell populations indicating an important contri-
bution of lncRNAs to the homeostasis and regulation of 
hematopoiesis [3, 35, 36]. Here, we review a selection of 
well-characterized lncRNAs that are involved at different 
levels of hematopoietic differentiation.

Fetal lncRNA H19 is one of the best-characterized 
lncRNAs in embryonic development and tumorigen-
esis. Physiologically downregulated after birth, H19 
is expressed in almost every type of human cancer [37, 
38]. During embryonic development, the lncRNA facili-
tates the transition from endothelial cells to hematopoi-
etic stem cells (HSCs), whereas in adult hematopoiesis, 
it is essential for maintaining HSC quiescence, thereby 
regulating the long-term homeostasis of HSCs [39, 40]. 
In addition, H19 is overexpressed in AML and correlates 
with poor prognosis. In  vitro knockdown of H19 leads 
to decreased proliferation and increased apoptosis in 
AML cell lines — further supporting its potential onco-
genic effect in AML [41]. Another example of a lncRNA 
implicated in HSC homeostasis is LncHSC-2, a nuclear 
lncRNA, which is expressed in HSCs and hematopoietic 
progenitors [42]. LncHSC-2 regulates long-term self-
renewal and lymphoid differentiation of HSCs by binding 



Page 3 of 9Neyazi et al. Molecular and Cellular Pediatrics            (2022) 9:10  

to Tcf3, a transcription factor that is essential for HSC 
proliferation and differentiation into myeloid-lymphoid 
progenitor cells [42].

In addition to these and other mechanistically studied 
examples of lncRNAs involved in HSC maintenance and 
maturation, several comprehensive transcriptomic stud-
ies identified hundreds of lncRNAs enriched in HSCs that 
are co-expressed with lineage-specific transcription fac-
tors, indicating that lncRNAs represent another impor-
tant layer of the complex regulatory network that tunes 
hematopoietic differentiation [35, 36, 42]. Accordingly, 
lncRNAs are specifically enriched and functionally rel-
evant not only in the context of HSCs but also in hemat-
opoietic progenitor cell populations and mature blood 
cell populations. For instance, lncRNA HOTAIRM1 is 
highly expressed during granulocytic differentiation and 
contributes to the modulation of target genes in cis and 
in trans that are essential for proper myelopoiesis [43].

LINC00173 is another example of a lncRNA that is 
essentially involved in myeloid differentiation. We iden-
tified LINC00173 to be specifically expressed in mature 
granulocytes [3]. Upon knockdown in hematopoietic 
stem and progenitor cells (HSPCs), granulocytic differ-
entiation and phagocytic capacity are impaired, whereas 
the erythroid lineage remained unaffected. Further analy-
ses revealed a direct interaction between LINC00173 and 
PRC2, as well as differential H3K27 trimethylation at the 
promoter regions of genes involved in stemness, mega-
karyopoiesis, and erythropoiesis [3].

During erythroid differentiation, lncRNA EPS is 
enriched only in erythroid progenitor cells and promotes 
terminal erythrocytic differentiation by repressing pro-
apoptotic pathways [44]. Within the lymphoid lineage, 
numerous lncRNAs that regulate differentiation and con-
tribute to the immune response have been described. An 
example is lncRNA NeST, which is specifically expressed 
in CD4+ T-helper 1 cells and regulates the transcription 
of inflammatory genes through recruiting histone meth-
yltransferase complexes [45, 46].

Dysregulation of the hematopoietic system results 
in uncontrolled proliferation of immature progenitor 
cells and in a block of proper differentiation, ultimately 
leading to the development of leukemia. Several lncR-
NAs have been shown to contribute to leukemogenesis 
[34]. In addition, lncRNAs may also serve as biomark-
ers or predictive factors in this disease [34]. It has been 
demonstrated that specific lncRNA expression pro-
files can be utilized to distinguish between different 
known molecular and cytogenetic AML subgroups and 
may serve as independent predictors of clinical out-
come [47]. Using several examples, we illustrate differ-
ent functions that have been described for individual 

lncRNAs in AML. We also briefly discuss lncRNA loci 
that may have functional consequences in AML cells 
independent from the encoded transcripts.

The lncRNA HOTAIR is highly expressed in AML and 
serves as a predictor for poor clinical outcome [48]. 
In vitro studies in primary AML blasts suggest an onco-
genic function of HOTAIR, where it supposedly acts 
as a decoy for the tumor-suppressive microRNA miR-
193a [48]. An alternative mode of action has also been 
described, where HOTAIR exerts its oncogenic effect in 
AML through EZH2-mediated epigenetic silencing of 
the tumor suppressor gene p15 [49].

LncRNA ANRIL, which is upregulated in both AML 
and ALL, acts as an oncogenic lncRNA by epigenetic 
silencing of its antisense tumor suppressor gene p15 
[14, 50] As for other oncogenic lncRNAs, recent stud-
ies indicate a correlation of ANRIL expression to poor 
survival in patients with AML [51].

In contrast to the previous examples, lncRNA IRAIN 
is downregulated in AML cell lines and patients with 
high-risk AML, indicating that lncRNAs might not only 
act as oncogenes but as tumor suppressors in AML, 
too [52]. This lncRNA is transcribed antisense from 
the insulin-like growth factor type I receptor (IGF1R) 
locus, which is known to promote proliferation of AML 
cells through the PI3K/Akt signaling pathway [53, 54]. 
Mechanistically, IRAIN is involved in the formation of 
an intrachromosomal chromatin loop connecting the 
IGF1R promoter to a putative enhancer element [52]. 
However, the functional implications of this mecha-
nism have yet to be elucidated. Clinical data further 
support the suggested tumor-suppressive function of 
IRAIN in AML, demonstrating a correlation between 
low IRAIN expression and poor prognosis in non-M3 
acute myeloid leukemia patients [55].

While the majority of lncRNAs have yet to undergo 
in-depth characterization, this selection of examples 
provides a glimpse into the diversity of lncRNA func-
tions in the context of hematopoiesis and AML. Even 
for these better-studied examples, it should be noted 
that mechanistic details remain elusive, due in part to 
the extensive experimental labor required to discern 
between RNA-dependent and -independent effects 
originating from lncRNA loci [56]. As a case in point, 
our group recently described MYNRL15 — a pan-mye-
loid leukemia dependency locus involved in genome 
topology, whose lncRNA product is dispensable for its 
dependency phenotype [57]. We found CTCF-enriched 
lncRNA loci (C-LNCs) like MYNRL15 to be enriched 
for leukemia vulnerabilities and provide a catalog 
(www.C- LNC. org) in hopes of facilitating the func-
tional classification of lncRNAs and the discovery of 
new oncogenic vulnerabilities [57].

http://www.c-lnc.org
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LncRNAs in pediatric AML
In contrast to many other malignant diseases, AML 
occurs in all age groups, but children account for only a 
small proportion of all patients with AML. The molecu-
lar landscape of pediatric AML differs significantly from 
the molecular profile of adult AML. Chromosomal aber-
rations are more common in children than in adults with 
AML [4, 58]. In addition, the genes that are frequently 
mutated in adult AML (NPM1, DNMT3A, IDH1, IDH2, 
RUNX1, TP53) are less often affected in children. Other 
genes, such as FLT3 or GATA2, differ in terms of the 
exact location and frequency of the mutations between 
pediatric and adult AML [4]. Given these biological 
and clinical differences, it is essential that we refrain 
from simply transferring new findings from adult cell 
lines, mouse models, and clinical cohorts of adult AML 
patients to the pediatric setting. Rather, investigations 
that focus specifically on pediatric AML are needed, to 
refine current risk stratification criteria and to develop 
novel therapeutic strategies for children with AML. 
While most current examples of lncRNAs with roles in 
AML have first been described in adult contexts, there 
is now an increasing number of studies characterizing 
lncRNAs in pediatric AML.

Our group described, for the first time, subtype-spe-
cific lncRNA signatures for six major cytogenetic sub-
groups of pediatric AML, namely, Down syndrome (DS) 
and non-DS acute megakaryoblastic leukemia (AMKL), 
inv[16], t[8;21], and AML with KMT2A rearrangement 
(t[9;11] and t[10;11]) [3]. In the transcriptional landscape 
of normal and malignant hematopoiesis, most DS- and 
non-DS-AMKL samples, and KMT2A-r samples, clus-
ter in close proximity to HSCs. Their lncRNA expres-
sion profiles are characterized by the absence of myeloid 
expression programs. In contrast, all other pediatric 
AML samples clustered in proximity to normal myeloid 
progenitor cells. We further uncovered a core lncRNA 
stem cell signature that is shared between HSCs and 
AML blasts of all different pediatric AML subgroups. 
High expression of this core lncRNA stemness program 
is significantly correlated with poor survival in a cohort 
of adult AML patients [3].

Other studies have focused on the in-depth charac-
terization of individual lncRNAs in pediatric AML. 
Here, we will summarize lncRNAs that have been impli-
cated in pediatric AML (Table  1) and will exemplarily 
discuss several individual lncRNAs, for which molecu-
lar functions have been studied in the context of pedi-
atric AML. Luo et al. found that the lncRNA HOTTIP is 
overexpressed in NPM1-mutated and KMT2A-r AML 
cases and predicts poor outcome [59]. Mechanisti-
cally, they showed that HOTTIP alters the three-dimen-
sional structure of the nearby HOXA locus and binds 

to posterior HOXA sites as well as other genes critically 
involved in hematopoiesis and leukemogenesis, result-
ing in the activation of an AML-specific transcriptional 
program. Of note, HOTTIP expression is sufficient 
to initiate leukemic transformation of HSCs in mice. 
Knockout of HOTTIP perturbs leukemic proliferation 
and prolongs the survival in AML mouse models, sug-
gesting a novel therapeutic option for the treatment of 
pediatric AML [59].

A recent elaborate study has identified lncRNA CDK6-
AS1 as a novel regulator in pediatric AML [60]. In a 
pediatric patient cohort, CDK6-AS1 was significantly 
overexpressed and associated with higher minimal resid-
ual disease after induction therapy. High CDK6-AS1 
levels contributed to an immature phenotype in healthy 
HSCs and primary AML blasts, whereas silencing of the 
lncRNA led to increased hematopoietic differentiation of 
HSCs and to a rescue of the pathogenic undifferentiated 
state of AML blasts. Mechanistically, the authors could 
show that CDK6-AS1 regulates expression of its neigh-
boring gene CDK6 by sharing a bidirectional promotor, 
and that the common CDK6-AS1/CDK6 axis downregu-
lates RUNX1 signaling, which is essential for early hemat-
opoietic differentiation. In addition, CDK6-AS1 activates 
mitochondrial biogenesis in healthy HSCs as well as in 
pediatric AML blasts. Interestingly, mitochondrial tar-
geting, using Tigecycline, sensitizes AML blasts with 
high CDK6-AS1 expression to chemotherapy, support-
ing the concept of a mitochondrial vulnerability in these 
blasts. Overall, these findings identified CDK6-AS1 as 
an important regulator of early hematopoietic differen-
tiation and leukemogenesis of pediatric AML and uncov-
ered therapeutics targeting mitochondrial biogenesis as a 
novel treatment strategy in pediatric AML [60].

UCA1 is an additional example of an oncogenic 
lncRNA in adult and pediatric AML. UCA1 has been 
shown to be upregulated by CEBPα-p30, the CEBPα 
isoform that results from CEBPA mutations recurrently 
found in AML patients [86]. In pediatric and adult AML 
cell lines, UCA1 is upregulated, and knockdown of the 
lncRNA impairs leukemic viability, migration, and inva-
sion through binding of various microRNAs, such as 
miR-126, miR-204, miR96-5p, and miR296-3p [61–64]. 
Furthermore, UCA1 contributes to chemoresistance in 
pediatric AML by tethering miR-125a [65].

Other examples of relevant lncRNAs in childhood 
AML are MONC and MIR100HG, which are host genes 
for the homologous miRNA clusters miR-99a~125b-2 
and miR-100~125b-1, respectively. These miRNA clus-
ters are known to promote the progression of AMKL 
[87, 88]. Both lncRNA host genes are highly expressed 
in AMKL cells compared to cell lines of other pediat-
ric AML subtypes. Lentiviral overexpression of MONC 
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alters hematopoietic differentiation, independently of the 
expression of the oncogenic miRNA clusters [66].

LncRNA MEG3 is downregulated in adult and pedi-
atric AML, supposedly by epigenetic modifications of 
its genomic locus. Mechanistically, MEG3 has been 
shown to activate p53 expression and DNMT3A, 
thereby inhibiting leukemogenesis [67]. Hypermeth-
ylation of the MEG3 promoter is associated with poor 
prognosis in adult AML patients [68]. In pediatric 

AML patients, higher expression of MEG3 correlates 
with better survival [69].

These are only a few examples of lncRNAs that have 
been characterized in the context of pediatric AML and 
that show correlation to clinically relevant subgroups 
and/or prognosis of the patients. In addition, a more 
general lncRNA scoring system based on the expres-
sion of 14 lncRNAs has been proposed to predict over-
all survival in children with AML [89].

Table 1 LncRNAs implicated in pediatric acute myeloid leukemia

Name Role in pediatric AML Cellular function Clinical significance in pediatric AML References

HOTTIP Oncogenic in NPM1‑mutated 
and KMT2A‑r AML

Activation of posterior HOXA genes and 
other hematopoietic genes

High expression correlates with poor 
survival

[59]

CDK6‑AS1 Oncogenic Silencing of RUNX1 transcription and activa‑
tion of mitochondrial biogenesis

High expression correlates with poor treat‑
ment response

[60]

UCA1 Oncogenic Binding of various miRNAs Unknown [61–65]

MONC Oncogenic in AMKL Unknown Unknown [66]

MIR100HG Oncogenic in AMKL Unknown Unknown [66]

MEG3 Tumor suppressive Activation of p53 expression and DNMT3A High expression correlates with better 
survival

[67–69]

HOXA10‑AS Oncogenic in KMT2A‑r AML Activation of the NF‑κB pathway High expression correlates with poor 
survival

[70]

LINC00998 Tumor suppressive ZFP36 binding and reduction of mTORC2 
mRNA stability

Low expression correlates with poor survival [71]

LINC01257 Oncogenic in t(8;21) AML Unknown High expression correlates with poor 
survival

[72]

MVIH Oncogenic Unknown High expression correlates with poor treat‑
ment response and survival

[73]

GAS6‑AS1 Oncogenic Decoy for tumor‑suppressive miRNA miR‑
370‑3p

Unknown [74]

FBXL19‑AS1 Oncogenic Unknown High expression correlates with poor 
survival

[75]

SNHG14 Oncogenic Decoy for tumor‑suppressive miRNA miR‑
193‑3p

Unknown [76]

DARS‑AS1 Oncogenic Decoy for tumor‑suppressive miRNA miR‑
425

High expression correlates with poor 
survival

[77]

TUG1 Oncogenic Decoy for tumor suppressive miRNA miR‑
221‑3p

Unknown [78]

LINC00909 Oncogenic Decoy for tumor‑suppressive miRNA miR‑
625

High expression correlates with poor 
survival

[79]

LAMP5‑AS1 Oncogenic in KMT2A‑r AML Activation of DOT1L and global H3K79 
methylation

High expression correlates with poor 
survival

[80]

LINC0064 Oncogenic Decoy for tumor‑suppressive miRNA miR‑
378a

Unknown [81]

Lnc‑SOX6‑1 Oncogenic Unknown High expression correlates with poor 
survival

[82]

CCAT1 Oncogenic in t(8;21) AML Unknown High expression correlates with poor 
survival

[83]

PVT1 Oncogenic in t(8;21) AML Unknown High expression correlates with poor 
survival

[83]

CASC15 Oncogenic in t(8;21) AML Regulation of YY1‑mediated transcription 
of SOX4

No correlation to prognosis [84]

DLEU2 Tumor suppressive in AML M5 Unknown No correlation to prognosis [85]
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HOXA10‑AS: a novel oncogenic lncRNA in pediatric 
AML with KMT2A rearrangements
In a recently published study from our group, the anti-
sense lncRNA HOXA10-AS was identified as an essen-
tial regulator of hematopoiesis and as a novel oncogenic 
lncRNA in the context of pediatric AML with KMT2A 
rearrangements (KMT2A-r AML) [70]. Along the 
genome, HOXA10-AS is located at the posterior end of 
the HOXA cluster — one of the four highly conserved 
HOX gene clusters. Tightly controlled spatiotempo-
ral expression of the different HOX genes is crucial for 
hematopoietic differentiation, and dysregulation of HOX 
genes such as HOXA9 and HOXA7 by KMT2A fusion 
proteins is responsible for leukemic transformation in 
KMT2A-r AML [90]. The HOX gene clusters harbor 
numerous lncRNAs that are expressed in the same spe-
cific pattern as their protein-coding neighbors during 
differentiation, indicating their putative biological impor-
tance [9]. Previous studies revealed that HOX lncRNAs 
are capable of regulating the expression of neighboring 
or distant protein-coding HOX genes, as well as of inde-
pendent effects on other signaling pathways [9, 12, 91]. 

Although a handful of HOX lncRNAs have undergone 
further characterization, the role of the vast majority of 
HOX lncRNAs in AML remains unknown.

HOXA10-AS is transcribed from the antisense strand 
relative to the protein-coding gene HOXA10 and micro-
RNA mir-196b, both of which are involved in hemat-
opoiesis and in the pathogenesis of KMT2A-r AML. In 
our study, we confirmed that HOXA10-AS is overex-
pressed in KMT2A-r AML as well (Fig.  1A). KMT2A 
rearrangements are the most frequent cytogenetic aber-
rations in pediatric AML and predominantly affect 
infants [58, 92]. Gain-of-function experiments in cell 
lines and primary blasts showed increased leukemic 
growth of KMT2A-r AML cells upon HOXA10-AS over-
expression. In complementary loss-of-function assays 
using shRNA-mediated knockdown, CRISPR-Cas9-
induced excision, and LNA-GapmeRs, we further dem-
onstrated that the maintenance of KMT2A-r AML cells 
depends on high HOXA10-AS expression (Fig. 1B). Dur-
ing normal hematopoiesis, HOXA10-AS is specifically 
expressed in HSCs and strongly downregulated during 
hematopoietic differentiation, whereas the neighboring 

Fig. 1 HOXA10-AS, an example of a lncRNA regulator of hematopoiesis and pediatric leukemia. A HOXA10-AS, is overexpressed in pediatric AML 
with KMT2A rearrangements, where it increases leukemic proliferation via activation of the NF‑κB signaling pathway. B Knockdown of HOXA10-AS 
using shRNAs leads to reduced growth of KMT2A‑r AML patient blasts in vivo. C HOX10-AS is specifically expressed in hematopoietic stem cells and 
downregulated during hematopoietic differentiation. D Upon overexpression in hematopoietic stem and progenitor cells (HSPCs), HOXA10-AS 
impairs monocytic differentiation through the activation of NF‑κB target genes
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genes HOXA10 and mir-196b remain highly expressed in 
early myeloid progenitor cells (Fig. 1C). This strict stem 
cell-specific expression of HOXA10-AS suggests an inde-
pendent regulatory circuit and cellular function separate 
from that of the nearby genes. Hematopoietic differentia-
tion assays upon lentiviral overexpression of HOXA10-AS 
in HSPCs revealed impaired monocytic differentiation in 
HOXA10-AS overexpressing cells (Fig.  1D). The obser-
vations that ectopic expression of HOXA10-AS impairs 
monocytic differentiation and that HOXA10-AS is over-
expressed in KMT2A-r AML are consistent with the fact 
that KMT2A-r AML predominantly manifests as a mono-
blastic leukemia (AML FAB M5) [58]. Regarding the 
mechanistic characterization of HOXA10-AS, we found 
that its effects in hematopoiesis and leukemogenesis 
were independent of changes in expression of the neigh-
boring oncogenes, arguing against a regulatory role for 
HOXA10-AS on the HOXA cluster in cis. This was sup-
ported by subcellular localization studies, which showed 
that the HOXA10-AS is mainly located in the cytoplasm. 
Indeed, microarray-based gene expression analysis 
uncovered a possible trans mechanism for HOXA10-AS 
involving the upregulation of NF-κB target genes in 
HOXA10-AS expressing early monocytic progenitors and 
KMT2A-r AML (Fig. 1 A and D). Finally, we provided a 
proof of principle of how HOXA10-AS could be lever-
aged towards clinical implementation, by demonstrating 
HOXA10-AS as a prognostic marker in AML and poten-
tial therapeutic target in pediatric KMT2A-r AML [70].

Conclusion
LncRNAs are emerging as regulators of hematopoiesis 
and AML pathogenesis, and knowledge about their indi-
vidual effects is rapidly increasing. However, extensive 
functional research is required before we gain a complete 
understanding of the complex regulatory networks sur-
rounding lncRNAs and their interplay with known onco-
genic drivers. While individual examples continue to 
provide valuable information about the roles of lncRNAs 
and how they might serve as novel therapeutic targets 
or prognostic factors in AML, research on lncRNAs in 
pediatric AML still lags behind adult AML. Thus, inves-
tigations of lncRNAs such as HOXA10-AS add important 
insights on the regulatory roles of lncRNAs in general, as 
well as crucial knowledge about the specific pathogenesis 
of pediatric AML, both of which will hopefully contrib-
ute to a comprehensive view and new therapies for this 
disease.
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