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Abstract

Biomarkers which predict future health outcomes are key to the goals of precision health. Such biomarkers do not
have to be involved in the causal pathway of a disease, and their performance is best assessed using statistical tests
of clinical performance and evaluation of net health impact. DNA methylation is the most commonly studied
epigenetic process and represents a potential biomarker of future health outcomes. We review 25 studies in non-
oncological paediatric conditions where DNA methylation biomarkers of future health outcomes are assessed.
Whilst a number of positive findings have been described, the body of evidence is severely limited by issues with
outcome measures, tissue-specific samples, accounting for sample cell type heterogeneity, lack of appropriate
statistical testing, small effect sizes, limited validation, and no assessment of net health impact. Future studies
should concentrate on careful study design to overcome these issues, and integration of DNA methylation data
with other ‘omic’, clinical, and environmental data to generate the most clinically useful biomarkers of paediatric
disease.
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Introduction
Precision health (also referred to as precision medicine and
personalised medicine) can be defined as interventions “tar-
geted to the needs of individual patients on the basis of
genetic, biomarker, phenotypic, or psychosocial characteris-
tics that distinguish a given patient from other patients with
similar clinical presentations” [1]. It is a rapidly growing
field [2] and has been described as an “ongoing revolution
in medicine, moving it from a reactive to a proactive discip-
line, where ultimately the objective is to maximize wellness
for each individual rather than simply to treat disease” [3].
Accordingly, significant resources are being allocated to the
development of precision approaches across a wide range
of healthcare areas with the aim of making discoveries
which can be incorporated into routine care [4].

Biomarkers that allow prediction of future health out-
comes are key foci of precision health [5]. These may iden-
tify those who are at high risk of developing a disease or
alternatively may predict disease progression and severity,
treatment response, or risk of complications. Advances in
genomics in particular, along with bioinformatics, proteo-
mics, and metabolomics, are all contributing to the identifi-
cation of biomarkers in the precision health field [1].
Whilst biomarkers may be involved in disease pathogenesis,
this is not a requirement for them to be clinically useful.
Biomarkers have been divided into ‘descriptive’ vs. ‘mech-
anistic’ biomarkers, where descriptive biomarkers are asso-
ciated with disease but not directly involved in the causal
pathway, and mechanistic biomarkers are directly involved
in disease pathogenesis [6]. Either type of biomarker is rele-
vant to the goals of precision health. The utility of bio-
markers can be assessed using statistical tests traditionally
used to assess clinical investigations such as sensitivity, spe-
cificity, positive predictive value, negative predictive value,
and area under a receiver operator curve [7]. In addition, if
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a biomarker is to be used in routine healthcare, a positive
net health impact must be demonstrated, including assess-
ment of factors such as cost-effectiveness and impact on
quality of life and disease severity [7].
Epigenetic processes regulate gene expression, without

changes in the underlying DNA sequence [8]. These are
tissue-specific (i.e. the epigenetic profile of leucocytes will
be different to that of bronchial epithelial cells), generally
persist during cell replication (are hence heritable), and
maybe influenced by the environment. A recent all-
encompassing definition of epigenetics is “modifications
of DNA or associated factors that have information con-
tent, other than the DNA sequence itself, are maintained
during cell division, are influenced by the environment,
and cause stable changes in gene expression” [8]. There
are several different epigenetic mechanisms (DNA methy-
lation, histone modification, non-coding RNA, and
higher-order chromatin structure) which regulate gene ex-
pression via modifying the accessibility of DNA to tran-
scription and other regulatory factors (see Fig. 1) [8].

Epigenetic processes do not work independently; rather,
they interact to determine gene expression. DNA methyla-
tion is the best understood and most useful epigenetic
marker to study human disease due to stability over time
and ease of measurement [8]. The most abundant form of
DNA methylation in the genome involves the addition of
a methyl group (CH3) to the fifth carbon of a cytosine nu-
cleotide within a cytosine-phosphate-guanine dinucleotide
(CpG) [10]. CpG sites are found throughout the genome
in low density and are usually highly methylated leading
to gene inactivation. They can be found in gene regions
such as the promoter (including transcription start sites
(TSS), 5′ untranslated region (UTR)), gene body (exons,
introns), 3′ UTR, and intergenic regions. A minority of
CpG sites are located in highly dense areas called CpG
islands, and these are located in the promoter regions of
around 70% of all genes [11]. CpG islands usually have a
low level of DNA methylation although this does not ne-
cessarily mean the gene will be highly expressed as other
steps such as transcription factor binding are required for

Fig. 1 Summary of epigenetic mechanisms. There are multiple epigenetic processes that interact to determine whether DNA (Ia) open and
accessible to transcription or (IIb) closed and inaccessible to transcription. Epigenetic processes include (II) DNA methylation, which is the
methylation of cytosine residues in CpG dinucleotides, (IIIa) histone tail modifications which can facilitate accessible DNA (histone acetylation and
methylation) or (IIIb) histone tail modifications which are associated with inaccessible DNA (histone deacetylation and demethylation), (IV) non-
coding RNA which interact with DNA and/or other epigenetic processes, and (V) higher-order chromatin structure (image modified from [9])
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gene expression. Whilst at the level of an individual allele
CpG methylation is a binary state (i.e. the CpG is either
methylated or not), the DNA methylation level of a sam-
ple will range from 0-100%. This is because samples will
contain a number of different alleles and will frequently
involve multiple different cell types each of which has a
unique methylation pattern. Hence, if a sample has a 50%
methylation level, this could be because 50% of the alleles
in the sample are methylated or because one cell type
makes up 50% of the sample, and 100% of the alleles in
that cell type are methylated and 0% of the alleles in other
cell types are methylated. An individual’s DNA methyla-
tion profile is influenced by their underlying genetic
makeup and both antenatal and postnatal environmental
exposures [12, 13].
As disease outcomes are often thought to be due to a

combination of genotype, environmental exposures, and
the interaction of the two [14], DNA methylation pat-
terns are potentially ideal biomarkers. Studies attempting
to identify DNA methylation biomarkers compare
methylation patterns between groups of patients who
differ based on the outcome of interest. DNA methyla-
tion can be assessed at specific CpG sites of interest or
using an epigenome-wide association study (EWAS) ap-
proach. The most commonly used product for EWAS is
the Illumina Infinium Methylation Array which has
evolved from assessing 27,000 (27K array) CPG sites to
450,000 (450k) and now over 850,000 (referred to as the
EpicArray). In either design, the average methylation at
each CpG site is compared with the aim of identifying
statistically significant differential methylation between
the two groups, referred to as a differentially methylated
position (DMP).
The aim of this review is to summarise the evidence

regarding the use of DNA methylation as predictive bio-
markers in children with a diagnosed disease. This in-
cludes prediction of disease severity, treatment response,
or development of complications. Studies examining
cancer have not been included as reviews in this area
have been recently published [15–17]. In addition, cross-
sectional association studies which attempt to link DNA
methylation to current disease state have been excluded,
as this review focuses on studies which predict future
outcomes in children as these offer greater insight as to

the predictive ability of DNA methylation profiles in de-
velopment of disease.

Evidence Reviewed
Articles were identified via the search strategy in Table 1.
A number of studies using DNA methylation as a bio-
marker in children have been completed (summarised in
Supplementary Table 1). Included studies examine
whether DNA methylation can predict disease severity
[18–26], treatment response [27–34], or development of a
complication [35–41].

Neurocognitive impairment in preterm infants
Premature infants are known to have an increased risk
of later life neurocognitive impairment. Two studies
have attempted to identify DNA methylation biomarkers
of future cognitive impairment in premature infants. Til-
ley et al. [35] examined genome-wide methylation, using
the 450K array, in a homogenised sample of chorionic
placental tissue of 84 extremely premature infants (born
at < 28 weeks gestation). At 10 years of age, participants
underwent a cognitive assessment using the School-Age
Differential Ability Scales–II. Using logistic regression
analysis, they identified 17 probe sites, corresponding to
16 genes involved in neuronal development and func-
tion, where increased DNA methylation was associated
with cognitive impairment at 10 years. Ten of the probes
were located in the gene body, 3 in the promoter region,
3 in the 5′UTR, and 1 in the 3′UTR. The effect size was
modest with odds ratios (OR) for these associations be-
tween 1.04 and 1.09. For each of the genes, a 1% increase
in methylation at their respective probe site resulted in a
4–7% increase in the odds of cognitive impairment.
There was evidence of a dose-response relationship, with
higher levels of methylation being associated with
greater impairment. Arpon et al. [36] examined 22 full-
term infants and 24 premature infants (< 34 weeks gesta-
tion). They performed an EWAS using a 450K array on
whole blood samples collected at 12 months of age. Neu-
rodevelopmental outcome at 2–3 years of age was
assessed using the Bayley Scale of Infant Development.
Correlations were assessed using Pearson or Spearman
tests, and linear regression was performed where signifi-
cant correlations existed. Correction for multiple testing

Table 1 Search strategy to identify articles

Database searched Pubmed

Dates All articles until 5.12.2019

Search terms DNA-methylation* AND (prognosis OR survival OR outcome* OR progression OR deterioration OR pathophysiology
OR physiopathology OR morbidit* OR mortalit*) AND (predict* OR response OR risk) AND (newborn* OR baby OR
babies OR neonat* OR infan* OR toddler* OR pre-schooler* OR preschooler* OR kindergarten OR boy OR boys OR
girl OR girls OR child OR children OR childhood OR adolescen* OR pediatric* OR paediatric* OR youth* OR teen OR
teens OR teenage*) AND (NOTNLM OR publisher[sb] OR inprocess[sb] OR pubmednotmedline[sb] OR indatareview[sb]
OR pubstatusaheadofprint)
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was undertaken using the Benjamini-Hochberg proced-
ure. They found methylation of a single CpG site located
in the 5′UTR of SLC6A3 showed the greatest difference
between preterm and term infants (increased methyla-
tion in preterm) and that increased methylation in both
term and preterm infants was associated with signifi-
cantly poorer motor function (r = − 0.55, p = 0.0001)
and mental function (r = − 0.44, p = 0.0028). The sites
of differential methylation identified in each of these
studies did not overlap, which may reflect differences in
sample size, the biospecimen used for methylation ana-
lysis, outcome assessment tool, and age at both methyla-
tion analysis and outcome assessment.

Asthma and allergy
In a large study examining 65 patients with food allergy,
Martino et al. [18] assessed DNA methylation in naive
CD4 T cells at enrolment and then 2–4 years later. Sub-
jects were aged between 11 and 15 months at enrolment
and defined as being food allergic based on a positive
skin prick test and clinical reactivity. At reassessment,
patients were classified as having persistent food allergy
(based on oral food challenge) or resolved allergy. The
investigators examined whether the change in DNA
methylation profiles from baseline to reassessment could
predict the likelihood of persistent allergy, and they fo-
cused on 26 loci which were demonstrated to be differ-
entially methylated between patients with and without
food allergy. They found that in 24 of 26 loci, there was
a significant change (adjusted p value < 0.05) in methyla-
tion from baseline to follow-up in patients with persist-
ent allergy, whereas methylation was stable in patients
whose allergy resolved. In the group with persistent al-
lergy, the maximum change in methylation at an individ-
ual locus between baseline and follow-up was 17.2%. Fu
et al. [42] studied methylation in the 5′UTR of β2 adre-
noreceptor (ADRB2) in 182 children with asthma aged
between 5 and 12 years. Blood was collected at enrol-
ment, and patients were followed up for 12 months.
Parent-reported symptoms were used to calculate an
asthma severity score, which was used to classify patients
into mild or severe disease. Multivariate logistic regres-
sion (adjusted for age and gender) was used. DNA
methylation was classified as ‘low,’ ‘intermediate,’ and
‘high,’ and asthma as ‘mild’ or ‘severe.’ In a dose-
dependent manner, increasing methylation of ADRB2
was associated with more severe asthma, with those with
intermediate methylation having an OR 4.11 (95% CI
1.58–10.73) for severe asthma and those with high
methylation having an OR 7.63 (95% CI 3.02–19.26).
The median methylation level in the severe asthma
group was 1.14% (range 0.2 to 3.6%) and in the mild
asthma group was 0.81% (0 to 2.4%). They also exam-
ined nitrous oxide exposure and found that in the highly

exposed group, those with ADRB2 hypermethylation had
an OR of 4.59 (95% CI 1.03–20.55) of having severe
asthma.
Two studies have investigated whether DNA methyla-

tion markers can predict response to corticosteroids
during an acute asthma exacerbation. Xiao et al. [27]
studied Vanin-1 (VNN1) methylation in nasal epithelial
cells, a surrogate for lower airway epithelium, obtained
in 18 children aged 5–18 years at presentation to hos-
pital with an acute asthma exacerbation and again after
12–24 h. VNN1 was identified as a gene of interest via
an initial gene expression investigation of > 20,000
genes. Patients were treated with a standardised asthma
protocol which included criteria for discharge. Good
corticosteroid response was defined as a length of hos-
pital stay ≤ 24 h, whereas poor response was defined as a
length of stay > 24 h. Those who had a good response to
corticosteroids had an increase in methylation at a single
CpG, located in the promoter region of VNN1, whereas
those that did not respond to corticosteroids had evi-
dence of decreased methylation, although the raw figures
were not reported. When assessed using Fischer’s exact
test, the differences were significant (p = 0.003). At the
same hospital, Zhang et al. [28] used the same design
but assessed genome-wide methylation using the 450K
array. Their study involved 33 children presenting with
acute asthma exacerbations aged 5–18 years. They used
linear regression and surrogate variable analysis to cor-
rect for confounders, as well as correcting for multiple
testing. They found hypermethylation at 1 site in the
promoter of lactate dehydrogenase C (LDHC) at presen-
tation was associated with poor treatment response. The
mean (standard error) methylation level was 87.7%
(2.1%) in the poor response group, and 78.6% (2.4%) in
the good responders (p = 0.007). A major strength of the
two studies looking at treatment effect was the use of
nasal epithelial cells to assess DNA methylation, which
is a better surrogate for bronchial epithelial cells than
peripheral blood [43].

Psychiatric disorders
Another area which has been widely studied in psychi-
atric disorders. In a group of 164 patients with 22q11
microdeletion syndrome, who are at an increased risk of
psychiatric disorders, Starnawska et al. [38] performed
an EWAS using the 450K array on neonatal blood spot
samples. The later development of a psychiatric disorder
was assessed by examining the Danish national psychi-
atric registry at a mean age of 14.7 years. Linear regres-
sion was used to adjust for confounders such as sex and
age. A total of 9 differentially methylated probes were
significantly associated with development of a psychiatric
disorder (unadjusted p value < 10−6). The effect size of
each individual CpG was not described. The probes were
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located in the promoter region of associated genes (4/9),
intergenic regions (3/9), and the gene body (2/9). A fur-
ther 9 probes associated with intellectual disability, 3
with schizophrenia, 2 with behavioural disorders, and 8
with development disorders. The individual effect size
was not detailed for any of these associations. The most
common location of probes associated with intellectual
disability was the promoter (4/9), and for development
disorders, it was the body (4/9). Several studies have ex-
amined whether DNA methylation biomarkers can pre-
dict response to treatment of psychiatric conditions.
Gasso et al. [29] examined whether methylation at 7
CpG sites in the promoter region of 5-
hydroxytryptamine receptor 1B (HTR1B), measured in
blood, could predict treatment response to 12 weeks of
the selective serotonin reuptake inhibitor medication,
fluoxetine. They studied 83 children aged between 10
and 17 years who were treated with fluoxetine due to
major depressive disorder, obsessive-compulsive dis-
order, or generalised anxiety disorder. Subjects com-
pleted multiple validated scales which measure disease
severity, and the change in these scales across 12 weeks
was used to define treatment response. Pearson’s test
was used to assess correlation, and a Bonferroni correc-
tion for multiple testing was performed. When the
methylation level at the 7 CpG sites was averaged, they
found a moderately strong inverse relationship with
higher methylation level associated with reduced fluoxet-
ine response (r = −0.335; p = 0.004). The methylation
level for the two groups was not reported. In a study of
116 children aged 6–13 years with an anxiety disorder,
the response to cognitive behaviour therapy (CBT) was
assessed [31]. Using buccal swab samples, targeted ana-
lysis of methylation of 6 CpG sites in the promoter re-
gion of the serotonin transporter (SLC6A4) was
performed pre- and post-treatment with CBT. Treat-
ment response was based on whether the anxiety dis-
order had resolved. Subjects with a sustained CBT
response (measured 6months post-treatment) were
more likely to have increased methylation at a single
CpG during treatment (+ 3.48%), whereas non-
responders were more likely to decrease (− 5.44%), and
this relationship was significant when corrected for mul-
tiple testing (p = 0.002). In another study also examining
buccal swabs from children (n = 98) with anxiety disor-
ders, and their response to cognitive behaviour therapy,
DNA methylation of CpG sites in the promoter region
of FK506 binding protein 5 (FKBP5) and glucocorticoid
receptor (GR) was assessed before and immediately after
treatment [30]. The children were aged between 5 and
18 years. Treatment response was defined as a change in
primary anxiety disorder severity. No significant effect of
FKBP5 or GR methylation was found. In a study of 111
children, mean age 9.25 years, with attention deficit

hyperactivity disorder (ADHD) who were treated with
methylphenidate, dopamine transporter (DAT1), and
dopamine receptor D4 (DRD4), promoter methylation
was assessed in blood samples collected pre-treatment
to see if this predicted treatment response [32]. The
diagnosis of ADHD was based on fulfilling international
criteria, and treatment response was based on change in
a validated ADHD severity questionnaire across 6 weeks.
Spearman’s rank correlation test was used to assess cor-
relations. They found lower mean DAT1 methylation
was associated with greater treatment response (rho = −
0.222, p = 0.019) although the mean methylation levels
were not reported.

Neonatology
Three studies have attempted to identify DNA methyla-
tion biomarkers of severity of neonatal abstinence syn-
drome (NAS). Wachman et al. [20] analysed opioid
receptor mu 1 (OPRM1) promoter methylation in the
saliva of 58 newborns and the relationship with NAS se-
verity. NAS severity was primarily defined based on the
need for pharmacological treatment, which was deter-
mined based on a standardised protocol. They used lin-
ear and logistic regression models as well as correction
for multiple testing using the Benjamini and Hochberg
method. The study found infants needing pharmaco-
logical treatment for NAS had higher methylation at sev-
eral CpGs: CpG − 18 (11.4% vs 4.4%, p = .001), CpG −
14 (46.1% vs 24.0%, p = .002), and CpG + 23 (26.3% vs
12.9%, p = .008). The same group of authors conducted
another study with the same methods and research
questions in a group of 86 infants with NAS. They did
not replicate the finding with regard to CpGs − 18, +23,
but did find that hypermethylation of CpG − 14 was as-
sociated with greater severity of NAS measured by need
for 2 medications to control symptoms (adjusted differ-
ence = 4.9% (95% CI 1.8–8.1%), p = 0.0030) [19]. In a
study of 21 babies, McLaughlin et al. [21] also used early
life saliva swabs and analysed methylation in ATP bind-
ing cassette subfamily B member 1 (ABCB1) promoter,
cytochrome P450 family 2 subfamily D member 6
(CYP2D6) exon 1, and OPRM1 promoter and exon 1.
They used a standardised protocol for monitoring NAS
severity. Unlike the studies by Wachman et al., they did
not find any significant effect. A potential explanation is
the smaller sample size of 21, as compared to 58 and 86
in the positive studies.
In a group of 20 premature infants, DNA methylation

in the GR promoter was analysed in blood from day 4 of
life [22]. The outcome of interest was need for treatment
with glucocorticosteroids for treatment of lung disease
of prematurity or late-onset circulatory collapse, al-
though criteria for exactly when glucocorticosteroids
were prescribed were not detailed. Using a logistic
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regression model, they found a weak association between
methylation at a single CpG site and need for treatment
with glucocorticosteroids (likelihood ratio 3.889, p =
0.0486). Dhas et al. [37] investigated 51 newborns with
sepsis which was defined as clinical features and pres-
ence of biochemical markers. They analysed global DNA
methylation in whole blood and using independent sam-
ples t tests found those who developed renal failure as a
complication of sepsis had slightly higher global methy-
lation levels (2.88% vs. 2.39%, p = 0.02).

Inflammatory bowel disease
Two studies have investigated children with inflamma-
tory bowel disease (IBD). Howell et al. [23] used intes-
tinal biopsy samples from 109 children with IBD and
performed an EWAS to identify biomarkers which pre-
dicted disease severity over the following 18 months.
Disease severity was based on clinical factors such as re-
quirement for treatment with biological agents and time
to third treatment escalation following diagnosis. They
also evaluated genome-wide gene expression. Differential
methylation analysis was performed using limma for
DNA methylation data, with a significant false discovery
rate [FDR] of < 0.01. They identified a DNA methylation
profile that was associated with increased disease sever-
ity, as well as demonstrating a gene expression profile
that is associated with severe disease with significant
overlap in the genes involved. A strength of this study
was using samples directly from the tissue of interest.
Another study used blood samples collected at diagnosis
and the EpicArray to perform an EWAS on 164 children
with Chron’s disease [24]. They measured disease sever-
ity by considering the time to progress to complicated
disease and attempted to identify DMP using linear
mixed-effects models and the Bonferroni correction for
multiple testing. They were unable to find any CpG sites
that were associated with disease severity.

Idiopathic scoliosis
Meng et al. studied patients with idiopathic scoliosis and
the risk of progression of the scoliosis curve beyond 30°,
which is a marker of severity. They identified CpG sites
of interest in blood, by first investigating two female
twin pairs with idiopathic scoliosis who were discordant
for curve progression. The top 4 DMP were chosen for
replication in a cross-sectional cohort of 92 adolescents
who were divided based on the severity of scoliosis at
presentation, and only one CpG site (cg01374129)
remained a significant DMP. This CpG site is not associ-
ated with a gene. They then tested the performance of
methylation at this individual CpG in a cohort of 276
adolescent subjects who had mild scoliosis at presenta-
tion and then were divided based on whether their scoli-
osis progressed prior to skeletal maturation. They used

the Mann-Whitney U test to compare the mean methy-
lation level and progression status. Mean methylation at
cg01374129 was lower in the group that progressed (ap-
proximately 10% vs. 16%, p < 0.0001), and when a re-
ceiver operator curve was calculated, the area under the
curve was 0.827 (95% CI 0.780 to 0.876), with a sensitiv-
ity of 76.4% and a specificity of 85.6% at a cutoff level of
15.1%. Two studies have attempted to identify bio-
markers of development of chronic pain complications
post-scoliosis surgery. In a study of 128 adolescent pa-
tients with idiopathic scoliosis undergoing scoliosis sur-
gery, OPRM1 promoter methylation was assessed at 22
CpG sites in blood collected during the operation [40].
Acute and chronic pain outcomes were assessed using
internationally validated definitions and were dichoto-
mised for analysis. Linear regression models were used
for analysis with significance set at p < 0.05. There was
no correction for multiple testing. After adjustment for
preoperative pain score and morphine consumption over
postoperative days 1 and 2, higher OPRM1 promoter
methylation at 3 CpG sites was associated with increased
acute postoperative pain. The strength of the association
was weak for two CpG sites with a 1% increase in DNA
methylation associated with regression coefficients of
0.921 and 1.864; however, one CpG had a regression co-
efficient of 17.736. When chronic postsurgical pain was
assessed, there was significant different methylation at
two CpG sites. The OR for these associations were rela-
tively weak: 1.069 (95% confidence interval 1.022–1.119)
and 1.037 (1.000–1.075). Once again, adjustment was
performed for preoperative pain and postoperative mor-
phine consumption. The two CpG sites did not overlap
with those associated with acute postoperative pain. The
authors provided further evidence for the role of OPRM1
methylation via using functional genomic analysis from
publicly available databases which showed increased
methylation would lead to reduced gene expression
and reduced response to opioids. In a subsequent
study, the same authors assessed 46 adolescents
undergoing scoliosis surgery. They performed an
EWAS using the EpicArray on peripheral blood sam-
ples. For this study, they used medication use and
questionnaires to assess pain severity. Surrogate vari-
ance analysis was used to control for confounders,
and adjusted linear regression models were used to
test for DMP. They identified 637 significantly differ-
entially methylated probes associated with chronic
postsurgical pain (p < 0.05). The DMPs were most
commonly found in the promoter region (23.31%) and
gene bodies (36.34%). The 637 DMPs were associated
with 310 genes and which are associated with path-
ways such as GABA receptor signalling, protein kin-
ase C signalling, dopamine receptor, and cyclic
adenosine monophosphate-mediated signalling.
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Other conditions
A number of other conditions have been investigated by
single studies. A single study has investigated 68 children
with juvenile idiopathic arthritis [26]. Patients were strati-
fied based on relapsing or sustained remission following
cessation of anti-tumour necrosis alpha treatment. The
450K array was performed on CD4 T cells collected as
anti-tumour necrosis alpha treatment was stopped.
Weighted gene coexpression network analysis was used to
identify differential methylation. This analysis examines
correlated CpGs rather than individual CpGs and reports
differentially methylated regions (DMR). They identified 5
DMRs between the two groups. The DMRs were associ-
ated with genes implicated in T cell activation, and this re-
lationship was confirmed in subsequent gene expression
and protein analysis experiments, with elevated markers
of T cell activation in those who did not have sustained re-
mission post-therapy cessation. Kuo et al. [33] studied 36
patients with Kawasaki disease and assessed the relation-
ship between Fc fragment of IgG receptor IIa (FCGR2A)
promoter methylation and response to treatment with
intravenous immunoglobulin (IVIG), based on deferves-
cence within 48 h. The sample source for methylation ana-
lysis was not reported. Mean methylation levels between
responders and non-responders were compared using the
chi-square test. They identified 5 CpG sites where in-
creased methylation was associated with non-response to
IVIG. At the 5 CpG sites, the difference in mean methyla-
tion level between the two groups ranged from 9.75 to
18.94%, and at all sites, the relationship was strong (p
value < 0.0001). Yang et al. [34] studied 20 patients with
infantile spasms and whether global DNA methylation in
blood collected prior to treatment starting was associated
with response to treatment with ACTH (based on change
in seizure frequency). Mean methylation between the re-
sponders and non-responders was compared using the
unpaired Student’s t test. No relationship between mean
DNA global methylation level and ACTH treatment effect
was identified. In a group of 97 patients with Beckwith-
Wiedemann syndrome, Gaston et al. [41] examined the
relationship between KCNQ1OT and H19 methylation
and risk of tumour development (a known complication
of Beckwith-Wiedemann syndrome). They used blood
samples, and in some patients, tissue samples from af-
fected organs were also obtained. Using the Kaplan-Meier
method, abnormal H19 methylation (defined as a methyla-
tion index > 60%) was strongly associated with an in-
creased risk of tumour development (34.6% vs. 4.2%,
hazard ratio 10, p < 0.0001).

Discussion
Several studies have investigated the use of DNA methy-
lation as a biomarker to predict future health outcomes
in children. In support of the notion that DNA

methylation is a viable biomarker, 22 of the 25 studies
report a positive finding, although that may represent
publication bias [44]. Unfortunately, due to issues with
chosen outcomes, tissue-specific samples, accounting for
sample cell type heterogeneity, lack of appropriate statis-
tical testing, small effect sizes, limited validation, and no
assessment of net health impact, the goal of DNA
methylation-based biomarkers being used in clinical care
for non-oncological paediatric diseases remains distant.
One of the most important aspects of any biomarker

study is to ensure that the outcome of the study is ro-
bust and clinically relevant. A number of studies have
used validated and widely accepted tools for assessing
the outcome, such as the use of the Bayleys Scale of In-
fant Development for assessing neurocognitive develop-
ment. Where possible, gold standard outcome measures
should be used as they are more robust than other out-
come measures such as parent-reported asthma symp-
toms, which are open to error [45]. This is of particular
relevance for studies examining severity of disease where
the study uses doctor prescription of a medication as a
marker of severity (i.e. corticosteroids in prematurity or
biological agents in IBD). Such endpoints are valid, but
only if the indications for such treatments are clearly ex-
plained, in keeping with international prescribing prac-
tices and are true surrogates for disease outcomes. If
not, any change seen may reflect the alternative practice
of those involved in the study and may not be
generalizable to a wider population.
Another important consideration is the tissue source

for DNA methylation analysis. As a large proportion of
methylation variation is tissue-specific [8], it is desirable
(where possible) to analyse samples from the target tis-
sue [46], for example, using intestinal biopsies to identify
biomarkers in IBD [23] rather than using blood samples
which were used in the majority of studies. It can be dif-
ficult to obtain samples from the tissue of interest in liv-
ing humans, and particularly children as they are less
tolerant of invasive testing. Potential solutions involve
using non-invasive sampling methods such as induced
sputum [47] or urine samples [48] which have success-
fully been used for DNA methylation analysis [49, 50].
Another potential method for analysing tissue-specific
DNA methylation in a relatively non-invasive manner is
by analysing cell-free DNA, which is made up of small
fragments of DNA that circulate in the blood and are
thought to originate from apoptotic/dying cells [51]. The
original cell type of cell-free DNA can often be deter-
mined through the identification of DNA methylation
signatures limited to a specific tissue type [52], and in
adult diseases, these may act a biomarker to identify spe-
cific health conditions [53]. To date, this approach has
largely been applied to early identification of primary (or
relapsed) malignancy or antenatal screening for fetal
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genetic abnormalities [54]. As yet, this approach has not
been assessed in children for less pathogenic conditions,
but represents a method to potentially sample the tissue
of interest from a peripheral blood sample.
Where samples used for DNA methylation analysis in-

volve multiple cell types (i.e. blood, buccal swabs), it is
important that cell composition of the sample is
accounted for in the analysis [55]. As each cell type will
have a unique DNA methylation profile, any differences
seen between cases and controls may equally reflect dif-
ferences in cell composition as bona fide methylation
changes associated with disease. A relative weakness of
most studies included in this review is that the majority
of them (15 of 25) do not account for issues arising from
differential cell composition. Six of 25 [24, 29, 35, 36, 38,
39] did account for cell composition, whilst several [18,
23, 26–28] avoided this issue by using a sample that only
included one cell type. A differing view is that alterations
in cell composition are often an important feature of a
specific disease/condition (i.e. inflammation will alter the
cell composition of blood) and therefore should not be
‘adjusted for’ in any methylation analysis. Rather, they
may provide key insights into the cellular disruption as-
sociated with disease pathogenesis.
The statistical analyses used to date limit the clinical

applicability of the evidence that has been generated. For
a test to be used in clinical practice, the performance
should be assessed via statistical measures such as sensi-
tivity, specificity, positive predictive value, negative pre-
dictive value, and area under a receiver operator curve.
Only one [25] of the included studies used these statis-
tical measures, whilst the majority of studies used statis-
tical tests that describe associations. This may be
because the authors are focusing on identifying associa-
tions which may inform disease mechanisms and thera-
peutic targets, but it would be ideal if statistical tests of
predictive ability were also used as identification of clin-
ically relevant biomarkers would be extremely useful.
Another important statistical consideration is study
power. The majority of EWAS studies conducted have
had a small sample size, with no power calculation per-
formed, and are likely underpowered [46]. However, re-
cently, a publicly available tool for EWAS power
calculation has been developed making it easier to de-
sign adequately powered studies, although it is only suit-
able for use with certain commonly collected specimens
[56]. Given current genome-wide methylation assays
measure methylation at 850,000 sites, another important
statistical consideration is correction for multiple testing
and there are many well-established methods for this.
A major limitation to the evidence generated in this

field so far is the generally reported small disease-
associated effect sizes of differential methylation between
groups. These likely arise from a combination of the

limited sensitivity and specificity of current methods
used to assess DNA methylation, relative to the gold
standard whole-genome bisulphite sequencing [57] in
combination with the relatively large disease-
independent inter-individual variation in methylation at
many genomic sites. Weak evidence of associations is
unlikely to perform well when aligned against the cri-
teria of a clinically relevant biomarker. In addition, these
findings are less likely to be replicated in external co-
horts. A lack of replication is another limitation of the
current evidence. As mentioned, 22 papers had a signifi-
cant finding; however, for the majority of these findings,
there has been no attempt at replication. One area where
there has been an attempt at replication is the role of
OPRM1 methylation in NAS, with two studies finding a
significant association [20] and one study finding no as-
sociation [21]. A number of EWAS have yielded positive
results; however, these have not been replicated in either
subsequent EWAS or targeted studies.
Despite the limitations of the evidence so far, there is

still potential for useful DNA methylation biomarkers to
be identified. Whilst most of the issues raised can be
overcome by careful study design, the small observed ef-
fect sizes may be more difficult. One approach would be
to incorporate DNA methylation data into combined
predictive models. These models could pool data from
multiple ‘omic’ inputs such as the genome (genetic mu-
tations), methylome (DNA methylation), transcriptome
(gene expression), and proteome (protein levels). An ex-
ample of a program which is using the proposed multi-
omic approach to better understand disease pathology
and predict disease outcomes is the Integrative Human
Microbiome Project. The second phase of this project is
collecting biospecimens from patients to investigate the
onset of inflammatory bowel disease and type 2 diabetes
and is analysing host genome, methylome, transcrip-
tome, and proteome as well as other factors such as the
microbiome [58]. The omics data could also be inte-
grated with existing diagnostics tests, clinical informa-
tion, and also information regarding environmental
exposures. In a study which examined prognostic bio-
markers in multiple cancer types, omic-based bio-
markers (including DNA methylation) outperformed
existing clinical scores, and a combination of omic and
clinical data had the best performance [59]. In another
study examining adult patients, the combination of clin-
ical information (via regular clinical assessment), envir-
onmental data (obtained using wearable sensors), and
proteomics (via assessment of high sensitive C reactive
protein) allowed earlier detection of inflammatory dis-
eases such as Lyme disease and also earlier detection of
insulin resistance [60]. The integration of the multiple
data sources, however, is not without challenges [61]. In
addition to demonstrating that such a biomarker
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performed well from a statistical point of view, a positive
net health impact would also need to be demonstrated [7].
However, if these hurdles are overcome, biomarkers
encompassing multiple data sources, including DNA
methylation, will represent a great advance in health care.

Conclusions
If the goals of precision health are to be recognised, bio-
markers which predict future health outcomes will need
to be identified. With the expansion in ‘omics’ technology,
there are multiple tools which may aid discovery of such
biomarkers. One such tool is epigenetics, in particular
DNA methylation, and multiple studies have already
undertaken research in this area. Whilst several positive
findings have been made, there is a long way to go before
these findings can be incorporated into clinical care. To
ensure the validity of any future discoveries, researchers
should ensure consideration is given to disease outcomes,
tissue-specific specimens, adjustment for cell-type hetero-
geneity, appropriate statistical tests, replication of positive
findings, and incorporating DNA methylation data into
combined biomarkers. If these factors are considered,
DNA methylation biomarkers have the potential to im-
prove the healthcare delivered to children.
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