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Abstract

Precursor B acute lymphoblastic leukemia (BCP-ALL), the most common childhood malignancy, arises from an
expansion of malignant B cell precursors in the bone marrow. Epidemiological studies suggest that infections or
immune responses to infections may promote such an expansion and thus BCP-ALL development. Nevertheless, a
specific pathogen responsible for this process has not been identified. BCP-ALL cells critically depend on interactions
with the bone marrow microenvironment. The bone marrow is also home to memory T helper (Th) cells that have
previously expanded during an immune response in the periphery. In secondary lymphoid organs, Th cells can interact
with malignant cells of mature B cell origin, while such interactions between Th cells and malignant immature B cell in
the bone marrow have not been described yet. Nevertheless, literature supports a model where Th cells—expanded
during an infection in early childhood—migrate to the bone marrow and support BCP-ALL cells as they support
normal B cells. Further research is required to mechanistically confirm this model and to elucidate the interaction
pathways between leukemia cells and cells of the tumor microenvironment. As benefit, targeting these interactions
could be included in current treatment regimens to increase therapeutic efficiency and to reduce relapses.
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Introduction
Precursor B cell acute lymphoblastic leukemia (BCP-
ALL) is the most common childhood malignancy and
represents the leading cause of cancer-related death in
children and young adults [1]. BCP-ALL arises from a
monoclonal or oligoclonal expansion of malignant B cell
precursors in the bone marrow. The malignant cells are
characterized by chromosomal alterations leading to the
expression of mutant proteins that confer survival and
proliferation advantages. Nevertheless, these genetic le-
sions are not sufficient for BCP-ALL development. This
is suggested by the fact that precursor B cells carrying
such characteristic mutations are frequently found in
newborns but the prevalence of leukemia is approxi-
mately a hundredfold lower [2, 3]. Based on these obser-
vations, a two-step model was proposed according to
which the leukemia-initiating genetic lesion occurs in

utero, followed by an event that promotes expansion of
the pre-leukemic clone and eventually leads to the emer-
gence of leukemia. Multiple causes for such a second
event have been suggested, and most probably several of
them account for the eventual transition to leukemia.
Interestingly, epidemiological studies provide evidence
that infections or immune responses to infections may
represent a major trigger for the leukemia pathogenesis.
In the late 1980s, Kinlen noted a temporal increase in

childhood leukemia in several occasions where previously
isolated populations mingled [4–8]. At the same time, Mel
Greaves postulated a “delayed infection” hypothesis,
according to which the development of leukemia is partly
caused by an abnormal immune reaction to a common
infectious agent [9]. Thereafter, several large studies
reported that children who attended a playgroup during
their first year of life showed a significant protection from
childhood ALL [10, 11]. Thus, similar to the hygiene
hypothesis in allergy and asthma, a delayed exposure to
common pathogens in developed societies may lead to
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abnormal or dysregulated immune responses that pro-
mote growth of the leukemic clone [12]. Most recently,
this model received mechanistic support by an elegant
investigation showing that experimental mice predisposed
for BCP-ALL development due to a PAX5 mutation
only developed BCP-ALL upon transfer from specific
pathogen-free (SPF) environment to an environment
containing common pathogens [13].
Immune responses to pathogens are typically com-

posed of concerted actions by several types of immune
cells. T helper (Th) cells play a central role in orchestrat-
ing immune responses by instructing and activating
other immune cells. B cells, for example, depend on
interaction with Th cells for their survival, proliferation,
differentiation to plasma cells, hypermutation, class-
switch recombination, adhesion, and migration [14].
While central in a functional immune system, such Th
cell-B cell interactions, however, can also contribute to
the pathogenesis of lymphoma and leukemia.
Malignantly transformed B cells often retain their

capacity to interact with Th cells. As a consequence, ma-
lignant B cells seem to profit from Th cell help similar
to healthy B cells. Such interactions between Th cells
and malignant B cells with untoward effects have been
described for several cancers arising from mature B
cells, the main targets of Th cells. In contrast, the inter-
action of Th cells with malignant immature B cells such
as BCP-ALL cells has not been studied extensively. In
this article, we review the literature concerning the role
of Th cells in mature B cell malignancies and summarize
data hinting at a role of Th cells in BCP-ALL, i.e., in
immature B cells, all in the context of the theory of an
infectious etiology of BCP-ALL.

Review
Role of the microenvironment in BCP-ALL
The tumor microenvironment plays a key role in sup-
porting survival and expansion of cancer cells [15–17].
In BCP-ALL, a variety of bone marrow stromal cells are
believed to support survival and proliferation of BCP-
ALL cells [18–21] and to confer drug resistance lead-
ing to treatment failure or disease relapse [22, 23].
Mesenchymal stromal cells [24], bone marrow endo-
thelial cells [25], osteoblasts [26], and adipocytes [27]
have all been shown to interact with BCP-ALL cells
in mechanisms involving both soluble factors like
cytokines, chemokines, and growth factors [28–33] as
well as cell membrane-bound molecules such as
Galectin-3 [34] or VE-cadherin [35]. These crosstalks
between leukemic cells and cells of the tumor micro-
environment include signaling pathways such as
Notch signaling [36] or the wnt pathway [37]. While
the microenvironment supports leukemia cells, the
leukemia cells, in turn, shape the microenvironment

according to their own benefit [38–41]. As a conse-
quence, the bone marrow of leukemia patients exhibits
substantial alterations that lead to support of the malig-
nant cells and to impaired hematopoiesis [42].
The bone marrow is also home to mature Th cells

[43–45]. These Th cells are derived from a past immune
response in the periphery, where they have expanded
and subsequently migrated to the bone marrow in order
to provide long-term memory allowing for raising a
rapid memory response upon re-challenge [46–48]. In
addition, these bone marrow Th cells play a crucial role
in normal hematopoiesis through the secretion of cyto-
kines and chemokines [49–51].

Involvement of Th cells in B cell malignancies
Physiological T cell help for B cells takes place in germinal
centers in peripheral lymphoid organs, where follicular Th
cells interact with mature antigen-stimulated B cells. This
interaction involves membrane-bound molecules like
CD40 on the B cells and CD40L on the Th cells but also
soluble factors like cytokines, chemokines or B cell-
activating factor (BAFF) and Fms-related tyrosine kinase 3
(flt3) ligand. Besides providing a suitable environment for
the interaction of Th cells and B cells, germinal centers
are also the site where malignant transformation of B cells
occurs most frequently. This has led to the hypothesis that
Th cells may not only support normal germinal center B
cells but also germinal center cell-derived malignant B
cells. In fact, there is increasing evidence for supportive
role of Th cells in mature B cell malignancies. Follicular
lymphoma (FL) is a lymphoma of B cells residing in
follicles of secondary lymph nodes. FL cells showed an
increased survival when stimulated by CD40 crosslinking
in vitro [52] as well as upon cognate interaction with
CD4+ Th cells [53]. Support of FL cells by Th cells was
also observed in vivo and seems to be mediated by follicu-
lar Th cell-derived CD40L and IL-4 [54]. Hodgkin lym-
phoma—another B cell malignancy presumably arising
from germinal center B cells—is characterized by infiltra-
tion of Th cells. Even though the function of these infil-
trating Th cells is unclear, the presence of certain Th cells
subset has been correlated with reduced overall survival,
suggesting that these infiltrating Th cells may support
growth of the malignant B cells [55, 56].
Chronic lymphocytic leukemia (CLL) is a malignancy

of mature B cells, although the precise cell of origin is
unclear [57]. CLL cells proliferate in pseudofollicles in
secondary lymphoid organs and in the bone marrow,
where they receive support from the microenvironment.
Recently, we demonstrated that peripheral blood and
lymph nodes of CLL patients contained memory Th cells
that were specific for endogenous CLL antigens and
were able to interact with CLL cells in an antigen-
dependent manner [58, 59]. These Th cells had a Th1-
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like phenotype and supported autologous CLL cell pro-
liferation in vitro and in murine xenograft experiments.
Furthermore, interaction of CLL cells with autologous
Th cells led to an upregulation of the risk marker CD38
in an interferon (IFN)-γ-dependent mechanism [60].
Thus, while the support of normal mature B cells is cen-
tral for the generation of an adaptive immune response,
the same interaction between Th cells and malignant B
cells seems to promote lymphoma or leukemia derived
from malignantly transformed mature B cells.

A supportive role for Th cells in BCP-ALL?
Unlike the above-mentioned B cell malignancies that ori-
ginate from mature B cells, BCP-ALL cells derive from
precursor B cells, i.e., immature B cells. Surprisingly, little
is known about the influence of Th cells on both normal
and malignant precursor B cells in the bone marrow.
Intriguingly, BCP-ALL cells as well as normal precursor B
cells express all molecules required for cognate interaction
with Th cells: CD40 [61], major histocompatibility
complex (MHC) class II, adhesion and co-stimulatory
molecules [62, 63], and receptors for cytokines [64–71]
and BAFF [72, 73]. Thus, they seem to have the capacity
to present antigen to Th cells and receive support through
the classical pathways.
In fact, BCP-ALL cells are receptive for CD40L stimu-

lation, which generally has an activating effect on BCP-
ALL cells, inducing proliferation [74] and upregulation
of surface molecules like CD70 [75] and the receptor for
IL-3 [76], a cytokine with proliferative function in BCP-
ALL. In addition, CD40L stimulation was shown to
induce secretion of chemoattractants [77] and to upreg-
ulate antigen-processing machinery components [78].
This suggests that BCP-ALL cells may attract Th cells
and activate them through presentation of antigens,
thereby inducing a positive feedback loop.
BCP-ALL cells can also respond to Th cell cyto-

kines. While IL-2 has been found to stimulate prolif-
eration [66], the Th2 cytokines IL-4 and IL-13 instead
inhibited growth [74, 79–81], and IL-4 as well as
TGF-β induced BCP-ALL cell apoptosis [82–84].
More recently, a proliferative effect of the cytokines
IL-17 and IL-21 on BCP-ALL cells has been reported
[85]. The observations that cytokines may be involved
in the pathogenesis of BCP-ALL are consistent with
the highly inflammatory environment in the bone
marrow of leukemia patients [40].
Further support for the ability of BCP-ALL cells to

react to soluble and membrane-bound Th cell factors
comes from a report where stimulation with activated
allogenic Th cells induced activation and maturation of
BCP-ALL cells [86]. Interestingly, BCP-ALL is associated
with certain MHC class II haplotypes. This may be a fur-
ther hint that antigen presentation to Th cells is involved

in BCP-ALL, even though mechanistic evidence is not
available yet [87, 88].

Model for Th cell contribution to BCP-ALL
While epidemiological as well as experimental animal stud-
ies suggest that infections contribute to the pathogenesis of
BCP-ALL, a specific infectious agent has not been identi-
fied. A strong association of BCP-ALL with viral infections
such as chicken pox, rubella, measles, and influenza was
described in British children [89], but no incorporation of
microbial genetic information into host DNA could be
detected when 20 BCP-ALL cases where analyzed by repre-
sentational difference analysis [90]. This makes it unlikely
that an infectious agent contributes to BCP-ALL by direct
transformation of the precursor B cells. Even though patho-
gens may stimulate proliferation of precursor B cells or
BCP-ALL cells through Toll-like receptors (TLR), this
seems rather unlikely, since BCP-ALL cells home to the
bone marrow, whereas most pathogens are encountered in
the periphery. Instead, Th cells that have expanded during
an immune response—possibly due to a delayed first expos-
ure to pathogens—may aberrantly interact with and
support the pre-leukemic or leukemic precursor B cells
upon (Fig. 1). This interaction may be antigen-independent;
alternatively, pathogen-specific Th cells might cross-react
with endogenous antigen expressed and presented by the
BCP-ALL cells. The nature of such endogenous antigens
remains highly speculative and elusive. Attractive candi-
dates are the fusion proteins generated by the characteristic
chromosomal translocations, since they are likely to be rec-
ognized as foreign as no immune tolerance against these
novel proteins has been induced. Indeed, Th cell clones
against the fusion proteins TEL/AML1 and BCR/ABL
could be generated in vitro [91, 92]. Nevertheless, it re-
mains to be determined whether BCP-ALL patients actually
carry such fusion protein-specific Th cells in their bone
marrow as expanded clones, and whether these Th cells are
able to interact with and support BCP-ALL cells.
In our work on CLL, we found that the CLL-specific Th

cells recognized an antigenic peptide within the CLL B cell
receptor (BCR) [58]. While not all subsets of BCP-ALL
cells express surface pre-BCR, most express components
of the pre-BCR intracellularly. Indeed, epitopes within the
variable regions of the pre-BCR are apt candidates to
engage Th cells, since they are likely to be presented on
MHCII, and the Th cells are presumably not tolerant to
these peptides. Still, both the antigen-dependence of the
interactions between Th cells and BCP-ALL cells as well
as the antigenic source remain speculations.

Implications for therapeutic approaches
Although modern treatment has reached an excellent
rate of success in western world, treatment success in
high-risk groups such as children with BCR-ABL or
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MLL-AF4 translocations remains poor. Furthermore,
relapse occurs in about 20% of the patients, and the cure
rate of a recurrent disease is significantly lower. Survi-
vors often suffer from severe chronic health problems
due to the toxic effects current therapy still has [93].
Therefore, there is justified need for biologically targeted
therapeutic strategies with less side effects. The tumor
microenvironment plays a central role in supporting
tumor cell survival, proliferation, and drug resistance. As
a consequence, effective leukemia therapies also ought
to target the malignant crosstalk between leukemia cells
and the supporting cells. Should the leukemia support-
ing role of Th cells be confirmed, it will be of great im-
portance to elucidate the mechanisms underlying this
malignant collaboration, since key molecules of this
interaction may be targeted by future therapies. If the
interaction of Th cells and BCP-ALL cells is antigen-
specific, the BCP-ALL-supporting Th cells are likely to
be oligoclonal. Thus, TCR-specific therapeutic antibodies
could be generated and used to specifically deplete the
leukemia-promoting Th cells, while Th cells with other
specificities will remain functional. Although it will not
be feasible to apply such a personalized therapy in the
initial phase of the treatment, the approach may be com-
bined with the existing drugs in the initial regimen in
order to prevent drug resistance and relapse.

Conclusions
The link between BCP-ALL and infections in early
childhood was proposed decades ago, but the patho-
logical mechanisms remain unclear. A direct transform-
ation of B cell precursors by pathogens seems unlikely.
Instead, immune cells activated and expanded in re-
sponse to those pathogens may supportively interact
with B cell precursors and thereby promote leukemia.
Due to their role in the immune system and their pres-
ence in the bone marrow, Th cells are good candidates
for such leukemia-supportive immune cells. Indeed, it
has been reported that BCP-ALL cells are receptive for
soluble and membrane-bound Th cell stimuli. Never-
theless, it is to date unclear if BCP-ALL cells are able
to receive help from autologous Th cells, and whether
such a supportive interaction actually takes place in
BCP-ALL patients’ bone marrow. The tumor micro-
environment plays a key role in supporting malignant
cells. As a consequence, efficient anti-cancer treatment
should include targeting the cells of the microenviron-
ment. Thus, identification and characterization of ma-
lignant collaboration between Th cells and BCP-ALL
cells or their precursors may provide mechanistic sup-
port of the infectious etiology hypothesis and thereby
open for novel therapies aiming to target the tumor
microenvironment.

Fig. 1 Model integrating the infectious etiology hypothesis with the potential role of Th cells in BCP-ALL pathogenesis. Precursor B cells develop
in the bone marrow, where they may undergo chromosomal rearrangements. Cells harboring such translocations that confer survival advantages
are often present as expanded clones at birth, but this does not necessarily lead to leukemia development (left side). Infections in early childhood
induce expansion of Th cells, which home to the bone marrow after the infection has been cleared to take part in normal hematopoiesis and to
rise a memory response upon re-challenge with the pathogen (left side). Th cells expanded during an aberrant immune response due to delayed
pathogen exposure may aberrantly interact with precursor B cells or leukemia cells or both after migration to the bone marrow, supporting their
growth and survival, which ultimately leads to leukemia (right side)
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