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Abstract

Bronchopulmonary dysplasia is a chronic lung disease of preterm infants. It is caused by the disturbance of
physiologic lung development mainly in the saccular stage with lifelong restrictions of pulmonary function and an
increased risk of abnormal somatic and psychomotor development. The contributors to this disease’s entity are
multifactorial with pre- and postnatal origin. Central to the pathogenesis of bronchopulmonary is the induction of a
massive pulmonary inflammatory response due to mechanical ventilation and oxygen toxicity. The extent of the
pro-inflammatory reaction and the disturbance of further alveolar growth and vasculogenesis vary largely and can
be modified by prenatal infections, antenatal steroids, and surfactant application.

This minireview summarizes the important recent research findings on the pulmonary inflammatory reaction
obtained in patient cohorts and in experimental models. Unfortunately, recent changes in clinical practice based on
these findings had only limited impact on the incidence of bronchopulmonary dysplasia.
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Introduction

Bronchopulmonary dysplasia (BPD) is a chronic lung
disease of preterm infants. The current worldwide used
classification takes into account the need for mechanical
ventilation and oxygen supplementation at 28 days of life
and at 36 weeks of gestation. Despite major treatment
advances during the last two decades, the incidence of
BPD is still above 30 % in preterms below 30 weeks of
gestation in most European countries [1]. Extremely pre-
term infants are delivered in the saccular stage of lung
development. BPD is caused by the disturbance of lung
development in this critical period. The diagnosis is as-
sociated with lifelong restrictions of pulmonary function
and increases the risk for abnormal somatic and psycho-
motor development [2]. The inflammatory alterations
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observed in preterms developing BPD are restricted to
the neonatal period, but the pulmonary metabolomic ab-
normalities persist into adulthood. Current animal expe-
riences raise fears that former preterms will develop a
COPD-like phenotype later in life with all the conse-
quences for quality of life and life expectancy [3-6]. The
factors contributing to this disease’s entity can be sepa-
rated into pre-, peri-, and postnatal causes. Within the
ante- and perinatal factors, genetic susceptibility, the
immaturity of the surfactant homeostasis, intrauterine
and perinatal infections, and lung growth restriction
due to placenta insufficiency are central factors
impacting on the development of BPD. The postnatal
lifesaving therapies of mechanical ventilation and oxy-
gen therapy induce a pulmonary inflammatory re-
sponse. Lung development is further affected by fluid
overload and nutritional deficits (Fig. 1). Despite the
progress in the mechanistic understanding of the
pathogenesis of BPD, the therapeutic options to prevent
this disease are still limited and drug therapies are of low
efficiency resulting in an only modest reduction of BPD
incidence [7, 8].
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Fig. 1 Central risk factors for BPD development. Depicted are the
central pre-/perinatal and postnatal risk factors contributing to the
pathogenesis of BPD

We will discuss in detail the recent advances in the
understanding of physiologic lung development and the
central contribution of the pulmonary inflammatory re-
sponse to the disturbance of this highly orchestrated
process. The potentials and limitations of established
and new therapeutic strategies are discussed based on
recent preterm cohort studies.

Alterations of normal lung development

Stages of lung development

Physiologic lung development is a highly orchestrated
process which in the end enables the gas exchange be-
tween the air-conducting parts of the lung and the blood
vessels. The stages of lung development can be divided
into the embryonic, the pseudoglandular, the canalicular,
the saccular, and the alveolar stage. During the embryonic
stage, the lung bud separates from the gut followed by the
branching morphogenesis in the pseudoglandular stage
until 17 weeks of gestation. The pseudoglandular stage is
followed by the canalicular stage which continuous until
the border of viability at about 24 weeks. The canalicular
stage is characterized by the formation of the terminal
branches of the bronchial tree, differentiation of type I
and type II cells, vascular outgrowth, and the thinning of
the mesenchyme. The subsequent saccular stage is mainly
characterized by the formation of the primitive terminal
airspaces, thinning of the connective tissue between the
airspace and the pulmonary vessels, and the beginning of
surfactant production. The saccular stage is marked by a
dramatic improvement of the prerequisites for gas
exchange, and any derangement of this vulnerable period
will lead to relevant limitations of gas exchange.

Consequences of disruption of lung development in the
saccular stage

Premature birth in the early phase of the saccular stage
leads to disruption of lung development and impaired
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septation. The pro-inflammatory pulmonary response
which is provoked by infection, mechanical ventilation,
and oxygen therapy negatively impacts these critical
steps which results in a reduced number of alveoli,
reduced surface area for gas exchange, and simplified
alveolar structures. These impairments have dramatic
consequences for gas exchange, and many preterms need
prolonged periods of mechanical ventilation, respiratory
support, and oxygen delivery. The further lung develop-
ment during the alveolar stage cannot induce a catch-up
growth which leads to relevant limitations of lung func-
tion persisting into adulthood [9, 10]. The impairments
of development of the air-conducting parts of the lung
are accompanied by a more or less serious distortion of
pulmonary vascular development. This double pathology
was confirmed in lung tissue sections from patients with
severe BPD and leads to the clinical situation of a double
limitation of gas exchange due to a restriction of the lung
surface area and a reduced capillary network. More severe
restrictions of lung function run a higher risk to develop
pulmonary hypertension which is of clinical relevance in
up to 25 % of preterms with the diagnosis of BPD [11].

Central signaling pathways for alveolar and vascular
development

For the molecular understanding of alveolar and vascular
lung development, we have to rely on the data from
animal models which clearly demonstrate that alveolar
development cannot be uncoupled from vascular devel-
opment. The proper composition of the extracellular
matrix in between is essential for the critical steps of
lung developmental, and both alveolar and vascular
growth requires the interaction with the extracellular
matrix. Vascular endothelial growth factor A (VEGFA) is
a key player of vascular development and mediator of
NO synthesis in the endothelium. Its inhibition is
accompanied by an inhibition of alveologenesis in sev-
eral animal species [12]. The HIF signaling pathway is a
further central regulatory pathway of vascular develop-
ment, and its dysregulation leads to the distortion of
vascular development dependent and independent of
VEGFA [13, 14]. Cytokines of the inflammatory response
like MCP-1 or MIP-1a are able to derange the formation
of alveolar capillaries [15]. The parallel development of
alveolar and microvascular structures is highly orches-
trated by the extracellular matrix which forms the inter-
layer in between. The development of the secondary
septae depends on the proper assembly of elastin fibers
at specific sites which is deranged in the pathologic
situation. In line with this, elastin haploinsufficiency
leads to the distortion of the mesenchyme and of vascu-
lar development [16]. In the pathologic situation of lung
injury, these fibers are excessively and diffusely deposited
in the mesenchyme. Mechanical ventilation leads to
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inappropriate deposition and elastin breakdown accom-
panied by distortion of further septation [17-19]. Proper
elastin fiber deposition is orchestrated by the fibroblasts
in the interstitial mesenchyme, and different genetic
knockout models have proven that the loss of fibroblasts
is associated with severe derangement of normal lung
development and remodeling of the extracellular matrix.
In animal models mimicking the clinical situation of
mechanical ventilation and oxygen therapy in the saccu-
lar stage of lung development, the fibroblasts and elastic
fibers are diffusely scattered in the mesenchyme and are
no longer located at the top of the secondary crests
where they normally contribute to further lung growth
[20, 21]. The inhibition of the C-terminal Src kinase
(Csk) and the subsequent overweight of epidermal
growth factor receptor signaling seem to be critical for
the abnormal distribution of lung fibroblasts [22].
Within the further pathways which are critical for nor-
mal lung development, two vitamin-dependent signaling
pathways have raised special attention: While the retin-
oic acid pathway is a well-known key regulator of critical
steps of lung development, latest data hint that vitamin
D is another positive regulator in the pathologic situ-
ation of lung damage [23-25].

The pulmonary inflammatory response

Imbalance of pro-inflammatory cytokines and growth factors
Since the early 1990s, it is well known that the pulmon-
ary inflammatory response due to mechanical ventilation
and oxygen therapy is characterized by a disbalance of
pro-inflammatory cytokines and growth factors followed
by the influx of inflammatory cells into the lung. Since
the first observations of cytologic changes in the tracheal
aspirates of preterms developing BPD, a plenty of studies
has detected an association between higher levels of
typical pro-inflammatory cytokines like IL-1p, IL-6, IL-8,
TNF-a, monocyte chemo-attractant proteins, and
macrophage inflammatory proteins in the tracheal aspir-
ate of the mechanically ventilated preterm infant and the
later development of BPD [26, 27]. The initiation of the
inflammatory response can already occur in utero, i.e., in
the situation of chorioamnionitis [28]. Further evaluation
of these markers of inflammation in the tracheal aspirate
and peripheral blood of the preterm infant is necessary
to confirm the applicability as early biomarkers of dis-
ease severity [29, 30]. The rise in pro-inflammatory cyto-
kines is accompanied by the upregulation of cell
adhesion molecules like ICAM-1 and L-selectin and by
the increase in chemotactic proteins that attract the in-
flammatory cells into the lung. The pulmonary attraction
of these cells leads to the persistence of the inflamma-
tory response and the accumulation of NF-kB within this
cellular fraction. In parallel, the levels of classical anti-
inflammatory cytokines like IL-10 and of central growth
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factors of alveolar and vascular growth like VEGFA and
PDGFA and the crucial members of the FGF family are
decreased in tracheal aspirates and preterm lung tissue
sections [31-33]. A certain specificity of the inflamma-
tory reaction can be attributed to the fact that the cyto-
kine levels of not all classical candidates are significantly
regulated including IL-4 and IL-13. Of special interest is
the focus on cytokines and proteins which regulate nor-
mal lung development and participate in tissue remodel-
ing. TGF-f and the BMP signaling pathways take a
central position with respect to both processes. The ac-
tivity of TGF-P is significantly increased in the tracheal
aspirates of preterm infants which later develop severe
BPD, and the appearance of a-SMA and TGF-p positive
fibroblasts is increased in the alveolar septae of preterms
with BPD [34, 35]. The expression level of matricellular
protein SPARC is significantly elevated in tracheal aspi-
rates and lung tissue sections from preterms with severe
BPD which regulates cell-matrix interaction and partici-
pates in tissue remodeling among other regulatory steps
by impacting on TGF-p, p-catenin and VEGFA signaling
[36, 37]. Downstream of TGF-, tissue transglutaminase-
2 and lysyl hydroxylase plod2 were identified as critical
regulators of extracellular matrix remodeling [38, 39].

Influx of inflammatory cells into the lung

The cellular fraction in the tracheal aspirates is domi-
nated by alveolar macrophages which contribute to the
persistence of the inflammation by the production of
further pro-inflammatory cytokines and by neutrophils
which secrete a plenty of proteases, leading to pulmon-
ary tissue damage, cellular apoptosis, and surfactant
inactivation. Recent observations suggest that the imma-
turity of the macrophage phenotype may account not
only for the severity of postnatal respiratory distress but
also for the progression to BPD [40]. There seems to be
a preexisting disbalance between proteinases and pro-
teinase inhibitors in the developing lung which makes it
more susceptible to organ damage. The ex utero higher
oxygen pressures and the clinical need for increases in
oxygen fraction induce further cell damage by the pro-
duction of reactive oxygen species which cause lung
damage by direct lipid peroxidation and aggravate the
tissue damage by proteases. The increase of matrix me-
talloproteinases, cysteine proteases, elastase, and trypsin
in the tracheal aspirates of preterms developing BPD
suggests an important role in the pathogenesis. Data
from clinical studies prove the association between
the extent of the pulmonary inflammation and the in-
crease in elastase activity in the tracheal aspirates of
preterm infants later developing severe BPD. The
elastin breakdown products like desmosine can be
detected in higher levels in the urine of preterms
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developing severe BPD and may serve as
markers of disease progression [41, 42].

Recent publications suggest that further cellular frac-
tions like mast cells accumulate in the lung tissue and
that reactive T cells in the peripheral blood also impact
on the development of BPD. Their precise role remains
to be determined. The phenomenon of immune toler-
ance or immunoparalysis due to antenatal infection has
to be taken into account when evaluating the impact of
hematopoietic inflammatory cells on distortion of lung
development [43, 44]. The complexity of the interaction
of the immune system with the microbial pathogens
probably accounts for the contradictory results of the
effects of pathogen colonization and infection on the
development of BPD [44-46]. Experimental evidence
underlines the importance of the order of exposures
which determines the impact on lung inflammation [47].
The lifesaving therapies of mechanical ventilation and
oxygen application have a direct impact on the different
cell fractions of the lung. For example, the structure and
function of airway smooth muscle cells is impacted by
hyperoxia in a dose-dependent manner [48]. Besides the
pro-inflammatory hematopoietic cells, mesenchymal
stromal cells can be detected within the tracheal aspi-
rates. The current scientific findings suggest a negative
impact of these cells on the incidence of BPD as they are
mainly isolated from tracheal aspirates of preterms with
severe BPD and show higher -catenin activation [37, 49].
Caution has to be taken before final conclusions are
drawn as in other lung disease entities their precise func-
tion is still of controversial debate. The critical steps of
inflammation are summarized in Fig. 2.

early
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The complexity of signal transduction

Animal models were able to reproduce the negative
impact of pro-inflammatory cytokines like IL-1f on lung
development in the saccular stage and to attribute the
activation of the NF-kB signaling a central role in the
pathogenesis of BPD. This is further fundamented by
experimental data that demonstrate a beneficial effect of
attenuation of NF-kB activation on lung development.
However, the therapeutic potential of NF-kB inhibition
is limited by its essential role in physiologic lung devel-
opment, mediating both alveologenesis and vasculogen-
esis. Furthermore, a disease-limiting function of NF-kB
in inflammation was attributed to the suppression of
macrophage inflammatory protein 2 [50-53]. The
physiologic functions of NF-kB in the developing lung
are even more complex as it is ubiquitously expressed;
controls diverse cellular functions including apoptosis,
survival, proliferation, and immune regulation; and
exerts simultaneously pro- and anti-inflammatory
actions. In line with this, recent data ascribe TNF-a, a
classical activator of NF-kB signaling, an important role
for the limitation of overwhelming TGF-f signaling, for
the protection from ventilator-induced lung injury and
the preservation of lung development [54]. These caveats
are further strengthened by the inconsistent results of
glucocorticoid actions on the developing lung which are
applied to suppress the inflammatory response. Despite
their potent anti-inflammatory activity, contradictory ef-
fects of glucocorticoids were observed during saccular
lung development. On the one hand, they promoted the
expansion of distal airways and thinning of the mesen-
chyme but on the other hand impaired secondary
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septation [55]. Also for other key regulators like MMP-
9, the data sets are not consistent and the impact has to
be studied within the complexity of the disease [56, 57].
The appropriate level of TGF- signaling is another ex-
ample, and the reduction or the abundance of activation
of TGF- pathways is associated with distortion of lung
development in any stage [58, 59]. Further complexity
arises from differences in clinical practice and, i.e., the
course of oxygen support. Recent experimental data hint
that not only the duration and fraction of oxygen supply
but also the change in oxygen fraction account for dif-
ferences in disturbance of lung development [60, 61].

Improvements in clinical care

Moderate reduction of BPD incidence by modification of
ventilation strategies

During the recent years, several clinical approaches have
been tested to reduce the incidence of BPD. Several ran-
domized controlled multicenter studies have tested the
impact of different ventilation strategies to reduce the
incidence of BPD: The comparison of initial stabilization
of the preterm infant after delivery with CPAP versus
intubation and surfactant application did not show infer-
jority of the CPAP without surfactant application strategy,
but it did not significantly impact on the incidence of BPD
[62, 63]. However, the follow-up at the age of 2 years did
demonstrate superiority of the CPAP approach with re-
spect to the number of infants with wheeze episodes, re-
spiratory illnesses, and emergency visits [64]. In line with
this, the comparison of high-frequency oscillation (HFO)
versus conventional ventilation did show superiority of
HFO and better lung function at the age of 11-14 years
although again the BPD incidence at 36 weeks was not
significantly different [65]. These studies underline that
long-term follow-up is essential to precisely assess the im-
pact on lung development. Whether the use of a more
gentle ventilation strategy tolerating higher pCO0, levels
impacts on the long-term pulmonary outcome is still not
clear. The short-term pulmonary outcome at 36 weeks of
gestation did not lead to a significant reduction in BPD
[66]. Besides modification of the ventilation regime, the
allocation to different oxygen saturation targets was exten-
sively studied during the recent years. The meta-analysis
of the recent multicenter trials with overall more than
5000 infants did not detect a significant difference for the
outcome parameter BPD between oxygen saturation limits
of 85-89 % versus 90-95 %. Here again, long-term follow-
up is urgently needed. The detailed view on all relevant
outcome parameters of prematurity revealed that the
higher survival rates in the higher Sp0, target group were
accompanied by a lower incidence of necrotizing entero-
colitis [67]. Therefore, it is essential to take into account
all severe complications of preterm birth when comparing
different ventilation strategies.
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Lack of new drug therapies to prevent BPD

More than 40 different therapeutic approaches have
been tested in randomized controlled trials during the
last two decades, but only 4 medications have proven
therapeutic efficiency in meta-analyses. Also natural sur-
factant constitutes a backbone of therapy of respiratory
distress of the preterm infant; its impact on the pulmon-
ary outcome gets only visible in the meta-analysis when
the parameter BPD is combined with death before dis-
charge [68]. The two initial randomized controlled trials
comparing the avoidance of mechanical ventilation by
less invasive surfactant application under spontaneous
breathing with clinical routine surfactant application via
the endotracheal tube were probably underpowered to
detect a significant difference with respect to the out-
come parameter BPD [69, 70]. The actual retrospective
analysis of a bigger cohort revealed that the sophisti-
cated technique of less invasive surfactant application
under spontaneous breathing led to a significant reduc-
tion in BPD incidence and overall morbidity [71]. Be-
sides surfactant therapy, both the therapy with caffeine
and the intramuscular application of vitamin A signifi-
cantly reduce the incidence of BPD; also, the mecha-
nisms leading to this reduction are not completely
determined in the preterm infant. Despite the thera-
peutic efficiency to reduce the incidence of BPD the rou-
tine use of corticosteroids should be avoided because of
the potential side effects on the psychomotor outcome
and the potential risks for lung development [55]. Taking
into account that efficient new therapeutic drugs to re-
duce the incidence of BPD are not within reach, the crit-
ical evaluation of these well-established drugs might lead
to a reduction of BPD in the short term. On the other
hand, a plenty of therapeutic strategies that have proven
efficient in animal studies displayed no superiority in
randomized controlled trials in the preterm infant.
One of the major disappointments is the application of
inhaled nitric oxide (iNO) during the initial phase of
mechanical ventilation. Although iNO proved highly
efficient in several animal studies and reduced the
pulmonary inflammation, stabilized the surfactant
homeostasis, and promoted lung growth, the results of
the combined analysis of published randomized trials do
not allow a recommendation of the use of iNO in the
clinical setting [72].

Conclusion

The latest data confirm that BPD is not only a multifac-
torial but a highly complex disease. The precise evalu-
ation of signal transduction and pathway interactions
will contribute to a thorough understanding of disease
pathology. Investigations of both pathway activation and
blockade of signal transduction are necessary for the de-
termination of pathway-specific effects, and the readouts
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should focus on all pathways relevant for normal lung
development and lung injury to get a comprehensive
view on BPD. This research direction will hopefully
overcome the current gap between progress in the
molecular understanding of the pathologic alterations in
animal models and the only limited advances to reduce
the incidence of chronic lung disease in the preterm
infant. Future studies are needed which comprehensively
study the pathologic processes induced by premature
birth, infections, mechanical ventilation, and oxygen
therapy. As patient lung tissue samples are not readily
available due to the high survival rates of preterm infants
and the special disease severity of preterms not surviving
till discharge, the search for readily available biomarkers
to predict disease severity and to control therapy effi-
ciency in animal and human trials is urgently needed.
Furthermore, more specific and precise approaches are
necessary to discriminate the different pathologies of
BPD which take into account the different causes like
antenatal growth restriction, genetic disposition, gender-
specific effects, pre- and postnatal infection, and the
therapeutic necessities of mechanical ventilation and
oxygen toxicity. When considering these variables, a
better patient-oriented therapeutic approach is possible
which can improve therapeutic efficiency based on the
molecular understanding of the different disease path-
ologies of bronchopulmonary dysplasia. The current
need for long-term follow-up can be hopefully avoided
by the introduction of more precise parameters to
estimate disease severity beyond the dependence on
mechanical ventilation and oxygen supplementation at
36 weeks of gestation.
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