
Albrecht and Dittrich Molecular and Cellular Pediatrics  (2015) 2:16 
DOI 10.1186/s40348-015-0027-1
MINI REVIEW Open Access
Expression and function of histamine and
its receptors in atopic dermatitis

M. Albrecht and A. M. Dittrich*
Abstract

Background: Atopic dermatitis constitutes a most burdensome chronic inflammatory skin disease. Standard
treatment is cumbersome and often targets its main symptom, pruritus, only insufficiently.

Findings: Recent advances in our understanding of the role of histamine and its four receptors suggest new
approaches which target the histamine receptors alone or as combination therapies to more efficiently combat
pruritus and inflammation in atopic dermatitis.

Conclusions: With this review, we provide an overview on histamine and the expression of its four receptors on
skin resident and nonresident cells. Furthermore, we summarize recent studies which suggest anti-histamine
therapy to efficiently combat pruritus and inflammation in atopic dermatitis and discuss possible approaches to
incorporate these findings into more effective treatment strategies for atopic dermatitis in childhood.
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Introduction
Atopic dermatitis (AD) is one of the most prevalent
chronic diseases in early childhood. AD affects about
20 % of all children [1] and can prevail into adulthood. Its
severe pruritus, stigmatizing local appearance, and
relapsing course turn it into a chronic disease with a heavy
psychological burden on the affected families. Treatment is
cumbersome and time-consuming, and pruritus can only
be addressed insufficiently, mainly by improvements in
overall disease control which cannot always be achieved.
Immunologically, AD is driven by TSLP-secretion by ker-

atinocytes and epithelial cells which modulate dendritic cell
(DC) and basophil function to preferentially induce a Th2
immune response. The Th2 associated cyto- and chemo-
kines IL-4, IL-5, IL-13, TARC/CCL17, and MDC/CCL22,
in turn, lead to recruitment of mast cells and eosinophils
whose mediator release includes histamine [2, 3].
Plasma histamine levels are higher in AD patients than

in healthy controls [4], and histamine is detected readily
in AD skin lesions [5]. Histamine’s pleiotropic actions
were acknowledged since its discovery and since the
1960s attributed to the secretion by different cell types
(Table 1) and the differential tissue expression of several
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receptors (Table 2, [6, 7]). Four histamine receptors
(HRs) have been described; thus far, the “youngest” of
these receptors, the H4-receptor was discovered in 2000
only [8, 9]. The first clinically used anti-histamine was
synthesized in 1942, and ever since, anti-histamines have
been a mainstay of anti-allergic, particularly anti-pruritic
therapy mainly by targeting the H1R.

Targeting histamine as a therapeutic approach for AD
For a long time, histamine’s effects in allergic skin dis-
ease were thought to be mediated solely by its action on
H1Rs. In the skin, H1Rs are expressed on vascular
smooth muscle cells, endothelial cells, neurons, and dif-
ferent immune cells such as monocytes, neutrophils,
DCs, and T and B cells where their activation drives the
typical symptoms of immediate hypersensitivity re-
sponses, comprising edema and pruritus [10]. Anti-H1R
antagonism has been a mainstay of anti-allergic treat-
ment regimens since the advent of the first anti-H1R
antagonists by chemical synthesis. Their efficiency as
anti-pruritic agents in urticaria and inclusion in the ther-
apy of anaphylaxis are undisputed. The effects of H1R
blockade in anaphylaxis critically depend on its vasocon-
strictive properties. The anti-pruritic effects are medi-
ated by a reduction of histamine-dependent release of
pruritogenic pro-inflammatory mediators such as
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Table 1 Resident and nonresident cells of the skin capable of
histamine secretion

Cell type

Neurons [110]

Basophils [111]

Mast cells [112]

Platelets [113]

DCs [114]

T cells [115]

Macrophages [51]
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bradykinins, serotonin, prostaglandins, and substance P
by mast cells which all can confer an itching sensation.
Moreover, histamine regulates the release of nerve
growth factor [11] and semaphorin 3A from keratino-
cytes which also act as pruritic factors, and H1R target-
ing reduces IL-31, a pro-pruritic cytokine which
additionally plays an important role in skin barrier integ-
rity [12–14].
In addition to its pro-pruritic effect, several studies

acknowledge a role for the H1R on immune cells in me-
diating inflammatory effects of allergic skin diseases with
antagonism of the H1R by several drugs demonstrating
anti-inflammatory properties in different experimental
models of AD [15–19]. Thus, antagonism of histamine
has the potential to affect pruritus as well as inflamma-
tion in AD. However, numerous clinical studies have
shown that AD is only insufficiently addressed by anti-
H1Rs [20, 21] since no significant reduction in pruritus
or disease severity over control was observed with topical
or systemic treatment [22, 23]. National guidelines thus
do not recommend treatment with anti-H1R antagonists
Table 2 Expression of HRs in resident and nonresident cells of the s

Cell type

Mast cells

Eosinophils

Basophils

Neutrophils

Dendritic cells

Langerhans cells

Monocytes/macrophages

T cells

B cells

Keratinocytes

Endothelial cells

Smooth muscle cells

Fibroblasts

Neurons
for the therapy of childhood AD anymore, neither system-
ically nor topically (AWMF S3 Leitlinie der deutschen
dermatologischen Gesellschaft; [24]). However, as we will
discuss below, new findings concerning the effect of hista-
mine and HR expression in AD and AD models necessi-
tate a re-thinking of the approaches used to target the
histamine pathway in atopic skin disease and suggest new
possibilities for anti-histamine therapy in AD.

Histamine and histamine receptor expression in
skin-resident and nonresident cells
In this review, we provide the readers with a compre-
hensive summary of histamine and histamine receptor
expression. In this context, we would like to caution
that, as usual, antibody-dependent methods to determine
expression levels depend on the antibody-specificity of
the antibodies used and thus need to be received with
the necessary prudence. As outlined above, a variety of
cell types within the skin are capable of histamine secre-
tion (Table 1). In turn, histamine can act on a variety of
cell types in the skin due to the widespread expression
of its four receptors on a large variety of cell types in the
skin (Table 2).

Mast cells, eosinophils, and basophils
Quantitatively, mast cells and eosinophils are mainly
responsible for histamine secretion in the skin. They can
respond to histamine secretion due to the expression of
different HRs (Tables 1 and 2). For eosinophils, differential
migratory and anti-migratory effects of histamine have
been described depending on its dose which differentially
acts on H1Rs and H2Rs [25, 26]. Additionally, both
eosinophil and mast cell migration into the skin are driven
kin

Histamine receptor expression

H1R [10], H4R [116, 117]

H1R [10], H2R, H3R [32, 91, 118, 119] H4R [120, 121]

H4R [116, 117]

H1R [10], H2R [122, 123], H4R [116, 117]

H1R [34], H2R [34], H3R [32, 19, 118, 119], H4R [33]

H4R [35]

H1R [10], H2R [122, 123], H3R [32, 91, 118, 119], H4R [8]

H1R [10], H2R [122, 123], H4R [100, 117, 124]

H1R [10], H2R [122, 123]

H1R [10], H2R [71]

H1R [10], H2R [122, 123], H1R–H4R [74]

H1R [10], H2R [122, 123]

H1R [82]

H1R [10], H2R [122, 123], H3R [32, 91, 118, 119]
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by H4Rs [26–28]. Basophils, similar to eosinophils and
mast cells, show H4R-dependent chemotaxis [29]. Indeed,
findings on the effects of histamine via H4Rs on mast
cells and eosinophil migratory behavior were instrumental
in suggesting that combination therapies with H1Rs
and H4Rs could provide synergistic efficacy in atopic
skin diseases.

Neutrophils
In the context of allergic late-phase reactions, neutro-
phils also infiltrate the skin lesions in AD and are sought
to contribute to disease flares [30]. While expression of
H1R, H2R, and H4R has been described on neutrophils
(Table 2), for many functional studies on the effect of
histamine on neutrophils, it remains unclear whether
these effects can be attributed to a direct effect of hista-
mine on neutrophils or is mediated by effects of hista-
mine on other cells types, for instance mast cells, which
in turn affect neutrophil functions. Furthermore, hista-
mine’s effects on neutrophils often show disparate re-
sults [31], suggesting that more research is needed to
increase our understanding of histamine’s effects on
neutrophils and potential beneficial aspects in the con-
text of AD.

Dendritic cells and langerhans cells and macrophages
In immune responses, histamine’s action on dendritic
cells and, in the skin, Langerhans cells (LC)s), which
express all four histamine receptors (DCs [32–34]) or
the H4R (LCs [35]), warrants special attention. DCs can
often be found in close proximity of degranulated mast
cells and histamine secretion by mast cells controls DC
migration to the lymph nodes [36]. Contact hypersensi-
tivity (CHS) reactions depend on the interaction of mast
cells and DCs [37], and the mast cell-DC interaction is
also critical in mediating tolerance to autologous anti-
gens in the skin [38]. Vanbervliet et al. showed earlier on
that H1R signaling is an important mediator for the
induction of allergen-dependent AD-like lesions in
murine skin [39]. Several studies have shown that HR
signaling critically shapes the T cell repertoire by modu-
lation of DC effects on T helper (Th) cell polarization.
For example, signaling via H1R on DCs promotes T
helper type 1 (Th1) polarization whereas H2R signaling
favors Th2 polarization and IL-10 secretion by DCs
[40–44]. Furthermore, the same group showed that
H1R signaling on DCs plays a critical role in the
balance of IFN-γ and IL-17 secretion, driving an AD
phenotype in mice [45]. Gschwandtner et al. showed that
IFN-γ upregulates H4R expression on inflammatory DCs
of AD patients and H4R stimulation of these cells leads to
reductions in TNF-α and IL-12 secretion [46]. In a CHS
model which displays some features of AD, blocking
of the H4R led to decreased DC migration to the LNs,
resulting in decreased Th2 and Th17 cytokine secretion
[47, 48]. In summary, these findings point towards a
decisive role for histamine in modulating DC/LC function
to distinctively shape the T cell response in AD.
In contrast to the development of DCs, during macro-

phage differentiation from monocytes H1R is up- and
H2R downregulated [49, 50]. Besides, macrophages are
capable to produce and secrete histamine themselves
[51]. Stimulation of lung macrophages by H1R leads to
release of pro-inflammatory mediators like IL-6 [52],
thereby amplifying an ongoing inflammatory response, a
process which might also take place in the skin. More-
over, stimulation of the IgE specific receptor (FcεRI) on
human monocytes promotes differentiation into H1R-
expressing macrophages, which are pro-inflammatory
and exhibit increased histamine secretion [53]. The same
authors could prove that H1R-positive macrophages are
present in AD lesions of the skin. Additionally, stimula-
tion of the H4R increases chemotaxis and phagocytosis
in murine bone marrow derived macrophages and a
macrophage-like cell line [54] furthermore aggravating
inflammation in AD. Antagonism of H1R and H4R
might thus be a strategy to inhibit self-amplifying pro-
inflammatory circles in skin macrophage function.

T cells
Polarized T cells display differential HR expression,
which contribute to the polarization and activation sta-
tus by histamine; Th1 cells express higher levels of H1R,
while T helper type II (Th2) cells express higher levels of
H2R. H1R stimulation is necessary for optimal IFN-γ
secretion [55, 56], increases Th1 proliferation, and has
chemotactic effects on airway Th1 cells [57]. H1R
knockout mice show enhanced secretion of Th2 cyto-
kines and reduced severity of Th1-dependent auto-
immune disease [58], pointing towards preferential Th1
activation by H1R. Moreover, triggering of H1R in allergic
rhinitis patients increases Th2 cytokine secretion [59]. By
resorting to differential H4R knockout mice, Hartwig et al.
could elegantly show that via H4R signaling on DCs,
the H4R is involved in T cell polarization towards a Th2
phenotype [60].
However, histamine’s effects on T cells are pleiotropic,

depending on the HR addressed. For example, histamine
exerts immunoregulatory effects via the H2R encom-
passing different Th cells: H2R knockout mice display
upregulation of both Th1 and Th2 cytokines [55] and
triggering of the H2R enhances TGF-β-dependent
suppression of Th2 responses and proliferation [61],
reduces IL-12 secretion [62], and can induce IL-10
secretion by Th2 cells [63]. These results assign a
critical role to the H2Rs in promoting peripheral tol-
erance, which is supported by studies with cells from
bee keepers tolerant to bee venom which show H2R-
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dependent suppression of IL-4 secretion by T cells in
favor of increases in IL-10 secretion [64]. Resistance
to H2R’s immunosuppressant properties and concomitant
H1R-dependent Th2 activation as observed in patients
with allergic rhinitis might underlie atopic disease mani-
festations and warrants further research [59].
Different studies also assign a role for histamine sig-

naling on tolerance induction or reduction by direct HR
activity on regulatory T cells (Tregs). In that line, trigger-
ing of the H1R on Tregs decreases their suppressive
function which was associated with decreases in CD25
and FoxP3 expression [65] while H4R triggering stimu-
lates Treg frequency [66] and migration and inhibits IL-
12 and CCL2 secretion [67]. To complicate the picture
even further, substantially, less is known on the expres-
sion of HRs on newer T helper cell subsets such as Th9,
Th17, or Th22 cells, as well as possible functional conse-
quences of such expression. H4R expression on Th17
has been described, and histamine stimulation of these
cells increased IL-17 secretion and overall activation
[68], suggesting that these cells might also be efficiently
targeted by H4R antagonists.

B cells
Histamine’s effects on B cells have not received much
attention thus far and the few studies that address this
question do not well discern direct or indirect effects of
histamine on B cells as they did not resort to B cell-
specific knockouts and could thus be mediated by hista-
mine’s effects on T cells or DCs. In HR knockout
models, histamine’s effects on B cells seem to largely de-
pend on the requirement for T cell help. For T cell-
independent B cell proliferation and immunoglobulin se-
cretion, histamine, via H1R, appears to have a positive
regulatory role while the production of T cell-dependent
antigens is suppressed via the H1R. Abolishment of H2R
signaling, however, decreases the production of T cell-
dependent immunoglobulin secretion by B cells [69].

Keratinocytes
Th polarization and differential activation of Th cells in
the skin is also driven by HR expression on keratino-
cytes. Histamine increases the production of MCP-1,
RANTES, and GM-CSF in keratinocytes [70], chemo-
kines with known pro-inflammatory and Th2-promoting
effects. Furthermore, H1R expression on keratinocytes has
been shown to differentially regulate the production of
Th1 vs. Th2 chemokines, providing a negative-feedback
signal for an existing Th2-dominant inflammation by
enhancing Th1 supporting chemokines and suppressing
Th2 favoring chemokine secretion [71]. Histamine also
has effects on other important keratinocyte functions
which go awry in AD: it decreases the formation of tight
junctions and the expression of filaggrin, processes
essential for the maintenance of skin barrier function,
and increases keratinocyte proliferation, leading to hyper-
keratosis [72, 73].

Endothelial cells
One main action of histamine on endothelial cells is its
role in increasing vascular permeability by inducing
endothelial barrier dysfunction contributing to patho-
logical processes like anaphylactic reactions. All four
identified receptors (H1R–H4R) can be found on endo-
thelial cells of dermal origin showing different subcellular
distribution amongst the receptors [74]. The disruption of
endothelial barrier function by histamine, however, seems
to be mediated primarily through H1R via the small
GTPase RhoA and its associated kinase ROCK, as treat-
ment with a ROCK inhibitor protects from anaphylactic
shock in experimental models [75]. Another function of
histamine is upregulation of P-selectin on endothelial cell
of dermal origin, enabling recruitment of leukocytes
and thus enhancing inflammation [76]. Endothelial
cells can amplify the immune response by secretion of
IL-6 and IL-8 [77, 78] and upregulation of TLR2 and
TLR4 after activation with histamine [79]. Although
the impact of histamine actions on endothelial cells in
AD pathology has been described as minor, data de-
scribing a longer lasting change in epithelial barrier
function due to histamine treatment in endothelial
cells of dermal origin compared to endothelial cells
from the umbilical vein or cardiac origin [74] might
indicate a more important role. Moreover, histamine
seems to have a pro-angiogenetic effect, since H1R sig-
naling on umbilical cord endothelial cells promotes
bFGF (basic fibroblast growth factor)-induced VEGF
(vascular endothelial growth factor) secretion and in
turn proliferation and tube formation [80].

Smooth muscle cells/fibroblasts
Besides the well-known involvment of histamine in the
weal and flare reaction by acting on vascular smooth
muscle cells via H1R [81], recent evidence exists that
histamine can influence skin fibroblast differentiation
into myofibroblasts and thus play a role in fibrotic
events: Histamine inhibits TGF-beta-mediated expres-
sion of αSMA (α-smooth muscle actin) by fibroblasts.
TGF-beta, however, induces downregulation of H1R
on fibroblasts leading to a balance between TGF-
beta-mediated and histamine-mediated actions [82].
More evidence for an important role of histamine in
the fibrotic processes in the skin gives the work by
Yang et al. who could show that histamine induces
periostin (a profibrotic protein) production by primary
dermal fibroblasts in an ERK1/2-mediated manner by
activation of H1R [83]. An increased expression of
periostin in lesional skin of AD patients is indeed
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described [84], rendering it possible that antagonism
of H1R might influence histamine-induced tissue re-
modeling in AD.

Neurons
Specific neurons in the skin mediate histamine-induced
itching sensations, mediated by specific conducting
pathways [85, 86]. Those skin innervating sensory neu-
rons express the H1R [87], H3R, and H4R, and activa-
tion of H1R and H4R promotes pruritus further
enhanced by H3R antagonism [88]. Histamine-induced
pruritic signals are mediated via protein kinase Cδ [89]
and activation of TRPV1 (a nonselective catione chan-
nel) via activation of phospholipase A [90]. Also, in vivo
and in vitro studies suggest that the H3R is involved in
mediating neuro-inflammatory effects by neuro-immune
interactions of nerves and T cells or mast cells [91, 92].

New histamine-directed approaches
The expression and effects of histamine-mediated signal-
ing on skin-resident and nonresident cells, as discussed
above, beg to re-evaluate the efficacy of histamine target-
ing in AD. Particularly, new studies which closer delin-
eate the main cellular players in AD, their histamine-
responsiveness, and findings on the most recently
discovered HR, the H4R, suggest that novel targeting
strategies incorporating the H4R could be effective in
targeting not only pruritus but also inflammation in this
abundant pediatric skin disease.
In that line, targeting the H4R has particular appeal

due to its pro-Th2 effects. H4R antagonism, via modu-
lation of DC activation, reduces Th2-driven airway in-
flammation [47, 48, 93]. Similarly, the H4R mediates
Th2-dependent skin inflammation [47, 48] with H4R
antagonists reducing TARC secretion by mast cells,
thereby reducing Th2 activation and polarization [19].
Signaling via H4R is also critically implied in a
hapten-induced AD model [94]. These studies translate
into other findings, showing that H4R antagonists are
more efficient than other HR antagonists in suppress-
ing allergen-induced pruritus [95] and H4R targeting
has been shown to efficiently target inflammation and
pruritus in different model systems [96–99], with the
H4Rs anti-pruritic effect possibly relying on reduction
of IL-31 secretion [100]. Furthermore, the H4R has
been shown to mediate Th17-dependent inflammation
in arthritis [101], suggesting that Th17-driven inflam-
mation which has been associated with AD [102–105],
particularly in acute skin lesions [106], can also be effi-
ciently countered by H4R antagonists. The first clinical
studies with JNJ39758979, a selective H4R antagonist,
showed good clinical efficacy in reducing histamine-
induced pruritus in healthy subjects [107] as well as in
reducing itch severity and duration in patients with AD
[108]. Unfortunately, severe side effects occurred in two
patients with this compound in the phase II trial, leading
to termination of the study.
Combination therapy with H1R and H4R antagonists

might be an even more powerful approach. In a T cell
transfer model, the use of specific H1- and H4-receptor
antagonists revealed a crucial role for H1- and H4-
receptors for Th2 migration and cytokine secretion in a
Th2-driven model of skin inflammation. While H1- and
H4-receptor antagonists both reduced Th2 recruitment
to the site of challenge, local cytokine responses in skin-
draining lymph nodes were only reduced by the com-
bined application of H1- and H4-receptor antagonists
[109]. These results might explain why antagonism of
H1R alone had no significant effects on the dermatitis in
an AD model [97], but co-administration did affect in-
flammation as well as pruritus [19]. Dunford et al. dem-
onstrated superiority of targeting the H4R for pruritus
compared to blockade of H1R. However, in H4R knock-
out mice, they showed an additive effect of H1R antag-
onism on pruritus, results which also argue for a
combination approach to achieve the most potent sup-
pression of histamine’s effects [95].

Conclusions
Taken together, a large number of in vitro and animal
studies suggest combined H1R/H4R targeting to suc-
cessfully address pruritus and inflammation, two closely
inter-related symptoms of AD. Initial clinical trials with
an H4R antagonist did show good efficacy with regard to
pruritus, yet the side-effects encountered prevent its de-
velopment as a marketable drug. Further improvements
in chemical compounds targeting the H4R are thus
needed to assess the effect of H4R treatment alone or in
conjunction with H1R antagonists on allergic skin in-
flammation and, provided efficacy, ultimately take them
into clinical trials to assess their clinical potential in a
disease which would clearly benefit from new thera-
peutic approaches.
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