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Abstract

Background: Childhood arterial ischemic stroke (CAIS) is increasingly recognized as an important cause of significant
long-term morbidity in the pediatric population. Post stroke movement disorders, above all hemi-dystonias, are much
more common in children after stroke compared to adults. However, research in this field is largely lacking. By
highlighting some important knowledge gaps, we aim to encourage future collaborative research projects in this
particular field.

Findings: Post stroke-dystonia seems to be much more common among children than adults. However, no reliable
epidemiological data of post-stroke movement disorders in childhood are available, and differentiation between
spasticity and dystonia can be challenging. Pharmacotherapy for dystonia is limited by lack of effect, especially in the
long-term treatment. The pathophysiology of dystonia is complex and incompletely understood. Recent findings from
functional imaging studies suggest that dystonia does not result from a single lesion but rather network dysfunctions
and abnormalities in functional connectivity. However, very few patients with post stroke dystonia have been studied,
and it is not clear to what extent pathophysiology of primary and post stroke ischemia shares common characteristics
on network level. In general, progress in understanding the nature of childhood dystonia lags far behind adult onset
CNS diseases.

Conclusions: Dystonia after CAIS is a common yet insufficiently understood and poorly studied clinical challenge. Studies
to improve our understanding of the underlying pathophysiology and consequently the development of instruments for
early prediction as well as targeted treatment of dystonia should become a high priority in collaborative childhood stroke

research.
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Background

Childhood arterial ischemic stroke (CAIS) is an import-
ant cause of morbidity and mortality in the pediatric
population. With an estimated incidence of 1.6 per
100,000 children per year (excluding neonates; [1]), more
than 200 new cases can be expected to occur in
Germany each year. Early brain injury due to stroke
commonly results in significant long-term impairment
[2-5]. Hemi-dystonia is a common, yet insufficiently
studied motor problem after CAIS leading to significant
life-long disability [6].
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The purpose of this review is to summarize current
knowledge about post stroke dystonia. By highlighting
some important knowledge gaps, we further aim to en-
courage future collaborative research projects.

Definition

According to a recent consensus update, “dystonia is a
movement disorder characterized by sustained or intermit-
tent muscle contractions causing abnormal, often repetitive,
movements, postures, or both. Dystonic movements are
typically patterned, twisting, and may be tremulous. Dys-
tonia is often initiated or worsened by voluntary action and
associated with overflow muscle activation [involuntary ac-
tivation of muscles that are not required to perform a given
movement]” [7]. Dystonia can be focal, segmental, multi-
focal, or generalized. Hemi-dystonia is defined as dystonia
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involving the ipsilateral arm and leg with or without affect-
ing the face, neck, or trunk. The former classification into
“primary” and “secondary” dystonia is currently discour-
aged. The new etiological classification now includes pat-
tern of inheritance and nervous system pathology [7].

Epidemiology
At present, no reliable epidemiological data of post
stroke movement disorders in childhood are available. In
adults, post stroke movement disorders in general are
considered rare, affecting only 1 % of stroke patients [8].
Post stroke-dystonia seems to be much more common
among children than adults [6]. A Canadian study found
that 21 % of the children with basal ganglia strokes will
eventually develop dystonia [9]. This stroke pattern is
particularly common in children with focal cerebral
arteriopathy (FCA), an important, presumably inflamma-
tory cause of CAIS (Fig. 1). FCA is a unilateral arteriopa-
thy of the large vessels of the anterior circulation,
typically affecting the distal ICA and proximal segments
of the middle cerebral artery (MCA) and anterior cere-
bral artery (ACA) [10]. Cerebral infarcts due to FCA are
nearly always located in perforator territories within the
basal ganglia zone.

Clinical characteristics and evaluation

Post stroke dystonia is usually unilateral, contralateral to
the brain lesion; however, it can also be bilateral or general-
ized. Rarely, ipsilateral dystonia has been described [11].
Post stroke dystonia mostly involves the distal upper limb
and often severely impairs manual functions [6, 12]. It can
occur immediately at stroke onset (rare) or, typical in chil-
dren, can be delayed by months or even years [13]. This is
in contrast to post stroke spasticity, which typically evolves
within the first few days or weeks post stroke. The reason
for the delay of clinical manifestation is incompletely
understood. Age-related maladaptive neuroplasticity as well
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as different CNS structures and networks involved is likely
to play a role. Future functional imaging studies will help to
better understand the underlying network damages.

Assessing dystonia is challenging because of its dy-
namic nature and overlap with other types of move-
ment disorders [14]. One study on motor impairment
after childhood onset stroke found that 15 of 24
(62.5 %) children with hemiparesis after stroke had
additional dystonia [15]. Diagnosing dystonia in these
cases is challenging; however, diagnostic instruments
to assist with the differentiation between spasticity
and dystonia are available [16]. These instruments en-
able to distinguish between involuntary movements or
greater tone with purposeful movements (dystonia) or
increased resistance during fast stretch compared to
low stretch (spasticity).

Assessments capturing the impact of dystonia on
motor function, activities of daily living, and the
child’s ability to participate have also been invented
[7]. Additional kinematic analyses (joint position, vel-
ocity, and acceleration of motion) can add important
quantitative information about the functional severity
more objectively [7, 17].

Treatment dilemmas

Hemi-dystonia almost always has severe impact on motor
function; however, response to treatment is typically poor
[17]. Pharmacotherapy for dystonia is limited by lack of ef-
fect, especially in the long-term treatment, or because side
effects are not tolerated ([17] Table 1). Botulinum toxin A
injections in affected muscles can reduce painful spasms
but do usually not directly improve function [17, 18].
Meanwhile, physiotherapy and occupational therapy are ac-
cepted as essential components to a multidisciplinary ther-
apy; research in this field is particularly limited. Constraint
induced movement therapy (CIMT), an established re-
habilitation strategy after adult stroke and for

A

beading appearance of the affected MCA segment (b)

Fig. 1 Right basal ganglia stroke (a) due to a focal cerebral arteriopathy involving the M1 segment of the right middle cerebral artery (MCA). Note the
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Table 1 Current and emerging treatment options for dystonia [16, 17]

Oral - Anticholinergics (e.g., trihexyphenidyl)- Tetrabenazine- L-dopa/carbidopa- Baclofen- Benzodiazepines (e.g., diazepam,
clonazepam)- Muscle relaxants (e.g., clonidin)- others (e.g., amitriptyline, gabapentin)

Intramuscular - Botulinum toxin

Intrathecal - Baclofen
Behavioral - Biofeedback- Constraint induced therapy
(Noninvasive) - Transcranial magnetic stimulation

neuromodulation

(Invasive)
neuromodulation

- Deep brain stimulation

unilateral cerebral palsy [19, 20], has not yet been
sufficiently evaluated in children with dystonia. A sin-
gle pilot study evaluated the effect of CIMT in six
children after stroke, including three with dystonia,
with positive effects on functional performance [21].

Therefore, more studies and further treatment options
are urgently needed.

Recently, biofeedback and transcranial magnetic
stimulation (TMS) have gained some attention as nonin-
vasive dystonia therapies. TMS is a painless method to
stimulate the human brain and modulate its excitability
[22]. Encouraging data from patients with writer’s cramp
and the noninvasiveness of this technique make TMS an
attractive candidate for future clinical studies in child-
hood [22].

Biofeedback studies focusing on inappropriate muscle
activation and force adoption suggest that visual biofeed-
back of muscle activity can help to reduce excess muscle
activation [23]. Children with dystonia may therefore to
some extent be able to control co-contraction and re-
duce overflow by these strategies [17].

Deep brain stimulation (DBS) of the globus pallidus inter-
nus can be an effective and safe treatment option for inher-
ited isolated generalized, segmental, and cervical dystonia
with improvement in the Burke-Fahn-Marsden Dystonia
Rating Scale (BFMDRS) of up 60-90 % [24], whereas the
outcome for patients with acquired dystonia such as
dyskinetic cerebral palsy is less distinctive and more het-
erogeneous, with a mean improvement of about 24 %
[25]. The experience with uni- or bilateral DBS for
pediatric patients with structural lesions due to stroke or
traumatic brain injury is very limited to a few small case
series [26, 27]. It is of note, that despite little or missing
improvement in motor scores, patients report about other
beneficial effects such as reduction of pain or decrease of
muscle tone [27]. Therefore, despite little evidence to sup-
port this therapeutic option, DBS should be considered
for young patients with disabling dystonia in the absence
of other effective treatment options.

Future studies on greater (pediatric) cohorts are ur-
gently needed to evaluate the effects of DBS in acquired
forms of dystonia such as post stroke dystonia

comprehensively and to identify prognostic markers for
the therapeutic effect.

Functional anatomy of basal ganglia
The pathophysiology of dystonia is complex and incom-
pletely understood.

Commonly assumed models of basal ganglia dysfunc-
tion in dystonia are certainly oversimplified. However,
they help to understand some basic ideas behind patho-
physiology and also treatment.

In the majority of cases of post stroke dystonia, lesions
in the basal ganglia, especially putamen, are found [11].
However, multiple other stroke locations have been asso-
ciated, including thalamus, caudate, internal capsule,
brainstem, cerebellum, and spinal cord [11]. Recent find-
ings from functional imaging studies suggest that dys-
tonia does not result from a single lesion but rather
network dysfunctions and abnormalities in functional
connectivity [28, 29]. Meanwhile, the basal ganglia and
related thalamo-cortical networks are major determi-
nants in the pathophysiology, sensorimotor cortex, and
alterations of cerebello-thalamo-cortical pathways likely
play an additional important role [28, 29].

Different resulting pathophysiological alterations have
been suggested:

1. Defects of inhibitory circuits at the spinal,
brainstem, cerebellar, or cortical level with decreased
inhibition of unwanted muscle patterns

2. Abnormal sensory function and sensorimotor
integration

3. Maladaptive plasticity of the sensorimotor cortex

However, it is increasingly recognized that different
forms of dystonia have a different neuroanatomical ori-
gin, and results of recent electrophysiological and func-
tional imaging studies of dystonia are not always
consistent [28, 29]. Very few patients with post stroke
dystonia have been studied. It is yet not clear to what ex-
tent pathophysiology of idiopathic or genetic and post
stroke dystonia share common characteristics at network
level [30-32].
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After CAIS, it can be assumed that network changes
differ significantly depending on the age at the time of
the stroke event. Maladaptive plasticity may play a major
role as animal studies of motor function outcome after
stroke suggest that effects of plasticity can impair motor
recovery by leading to network dysfunctions [33].

Cerebral networks and modern imaging: missed
opportunities?

With the progress of modern brain imaging techniques
more detailed analyses of type, localisation and extent of
ischemic lesions as well as cerebral reorganization and
functional consequences after cerebral ischemia have
been made possible. Along with the improved under-
standing of network dysfunctions, early prediction of
dystonia and more specific treatment approaches may be
available in the future. Nevertheless, comparing the
enormous number of functional imaging studies in
adults with (mostly inherited isolated) dystonia with the
very limited research in children highlights obvious diffi-
culties and challenges of studying children (Table 2).
Progress in understanding the nature of childhood dys-
tonia lacks far behind adult onset CNS diseases.

An increasing variety of (functional) imaging methods
is available. Recently, resting state (rs) fMRI, the exam-
ination of spontaneous brain function by using blood
oxygen level-dependent contrast in the absence of a
task, has facilitated noninvasive mapping of neural net-
work dysfunction even in children [34]. Using spontan-
eous activity, resting state maps can be generated
reflecting functional brain organization. Limited rs
fMRI data is available on dystonia [35, 36]. Abnormal
functional connectivity was found in patients with
writer’s cramp as well as cervical dystonia. Preliminary
data suggest that this technique can be successfully
used in disabled, asleep, or even sedated children with
scanning times of about 5 min [34].

Magnetoencephalography (MEG) might be another
noninvasive method for network studies in children.
MEG is a technique that records magnetic fields gener-
ated by the brain. Because it is also possible to do depth
recording, three-dimensional information can be gath-
ered. MEG studies in patients with focal dystonias show
considerable overlap with findings from neuroimaging
studies indicating reduced inhibition and disturbed
sensory-motor integration [37]. Future research will be
needed to proof its reliable use in children.

Conclusion and future directions

Dystonia after CAIS is a common vyet insufficiently
understood and poorly studied clinical challenge.
Population-based studies are needed to better define
prevalence, clinical presentation, time course, and
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Table 2 Some pediatric challenges in functional imaging
studies [28]

Small patient numbers

Limited normative data

Child unfriendly environment (MRI)
Acoustic noise

Motion artifacts

Effects of maturation

Effects of sedation

Limited cooperation

Monitoring task performance

Limited acquisition time

treatment response of pediatric post stroke dystonia.
Studies using modern, innovative imaging techniques
will help to improve our understanding of the under-
lying pathophysiology and consequently the develop-
ment of instruments for early prediction as well as
targeted treatment of dystonia. Finally, treatment studies
should evaluate whether noninvasive treatments such as
TMS or biofeedback have the potential to improve
motor function and quality of life in children with post
stroke dystonia.
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