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Abstract

respiratory diseases and hemoglobinopathies.

therapeutic effect in treating major pediatric diseases.

Background: The immunogenicity and limited stability of conventional messenger RNA (mRNA) has traditionally
restricted its potential therapeutic use. In 1992, the first clinical application of MRNA was reported as a potential
protein-replacement therapy; however, subsequent investigations have not been made for almost two decades.
Recent developments, including increased stability, controlling immunogenicity, as well as utilization of mMRNA
encoding zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENS), and CRISPR-Cas9,

have implicated modified mRNA as a very promising option for cancer immunotherapy, vaccines, protein expression
replacement, and genome editing. This review aims to offer a summary of our present understanding of and
improvements in mMRNA-based drug technologies, along with a focus on the role in therapeutic options for pediatric

Conclusions: This mini review summarizes the recent advances in modified mRNA-based therapy and its potential

Keywords: Modified mRNA, Pediatric diseases, Gene therapy

Findings

Introduction

Pediatric respiratory illness is a major cause of mortality
and morbidity among infants and young children as they
are more susceptible to respiratory diseases [1]. Asthma,
tuberculosis, bronchiectasis, and bronchopulmonary
dysplasia are chronic respiratory diseases in children. In
addition, congenital respiratory disorders such as cystic
fibrosis and primary ciliary dyskinesia are observed at
lower incidence in children [2, 3]. Next to the lung dis-
eases, hemoglobinopathies are the most common genetic
disorders in pediatrics as at least 60,000 severely affected
children are born every year [4, 5]. Although treatments
are available for both clinical pictures, the major issue
appears to be its limited effectiveness, thus providing
only a short-term cure [5, 6]. However, recent advance-
ments in science have paved the way to treat such dis-
eases at the molecular level as new therapeutic targets
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and pathways are uncovered. In this review, we focus on
common pediatric respiratory illness and hemoglobinop-
athies that are potentially amenable to gene therapy.

For two decades, gene therapy has been focused on
plasmid DNA and viral DNA, with severe consequences
in early key studies [7]. However, gene therapy has greatly
evolved and has become a major focus in nucleotide-
based gene therapy. Kariké et al. and Kormann et al. dem-
onstrated that chemical modification of messenger RNA
(mRNA) resulted in mRNA transcripts being less im-
munogenic and more efficiently translated in vitro [8] and
in vivo [9]. Such chemically modified messenger RNA
(mod. mRNA) has many advantages compared to other
therapeutic nucleic acids. The most important features
comprise a transient protein expression, reduced im-
munogenicity, superior translation efficiency, and pharma-
ceutical safety, as mod. mRNA does not integrate into the
host genome [8, 10, 11]. Current progress in targeted
genome editing mediated by nucleases and encoded by
mod. mRNA to express engineered nucleases such as the
CRISPR-Cas9 system, zinc-finger nucleases (ZFNs), and
TAL effector nucleases (TALENs) will undoubtedly
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translate basic research findings to novel molecular thera-
peutics in the treatment of pediatric diseases [12, 13]. The
principle and applications of mod. mRNA are illustrated
in Fig. 1.

Mod. mRNA: a better tool for gene therapy?

In a landmark publication, Warren et al. implicated
chemically modified mRNA as a powerful tool to express
proteins of interest in target cells in vitro. These authors
showed that repeated administration of mod. mRNA en-
coding the Yamanaka factors KLF4, c-MYC, OCT4, and
SOX2 could reprogram terminally differentiated human
fibroblasts into pluripotent myofibroblasts without the
need for retroviral vectors [14]. Consequently, the study
provided an efficient way to reprogram cell fate without
the risk of potential genomic integration. Subsequent
studies have extended these initial observations of mod.
mRNA-encoded protein expression to in vivo models,
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demonstrating specific expression in organs such as the
heart, skeletal muscle, and lung [9, 15, 16].

Mod. mRNA: reduced immunogenicity and increased
stability

To achieve a beneficial therapeutic effect, reduced activa-
tion of innate immune receptors and an increased bio-
logical stability are key issues that need to be addressed
when considering future clinical applications of mod.
mRNA. Chemical substitutions such as the replacement
of uridine by pseudouridine (¥) or cytosine by 5-methyl-
cytosine (m5C) on target mRNA ultimately allow them to
evade innate immune responses such as Toll-like receptor
(TLRs) signaling pathways [8]. A study by Kormann et al.
demonstrated that combining chemical modifications,
such as the replacement of 25 % of uridine and cytidine
with 2-thiouridine (s2U) and m5C reduced recognition of
target mRNA through pattern recognition receptors, in-
cluding TLR3, TLR7, TLR8, and RIG-I in human PBMCs.
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Fig. 1 The principle and applications of modified mRNA. Modified mRNA can be transfected via several routes to the target cell, e.g, intraperitoneally,
intravenously, or intratracheally. After endocytosis, the incorporation of naturally occurring, noncanonical nucleosides (indicated as red dots) into in vitro
transcribed mRNA prevents activation of and consequently degradation by endosomal (Toll-like receptors, TLRs) and cytoplasmatic (MDAS, RIGT) mRNA-
Sensors, thus being efficiently translated into a functional protein at the cell's ribosomes. Different target applications can be applied for modified mRNA:
(a) genome targeting, resulting in functional nucleases (e.g. zink-finger nucleases, CRISPR/Cas9) that bind and create sequence-specific double-strand
breaks within the genome to facilitate gene correction, gene replacement or gene knock-out; (b) protein supplementation, where endogeneous protein
malfunction can be overcome by restoring normal protein function; (c) extrinsic/receptor function in case of improper cell signaling
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In addition, the same modifications also facilitated in vivo
delivery of the respective mRNA [9]. These findings were
verified by a subsequent study and confirmed that chem-
ical modification effects in reduced innate immune recog-
nition [17]. Very recently, it has been shown that the
incorporation of Nl-methylpseudouridine (ml1¥) in
mRNA resulted in innate immune evasion and increased
translational capacity in vitro and in vivo [18]. Next to
chemical modifications, other approaches to enhance sta-
bility and translational efficacy of mRNA include the use
of phosphorothioate 5" cap analogs, HPLC purification,
and polyadenylation tail by a defined number of adeno-
sines as well as the incorporation of stabilizer proteins
[19-22]. The progress in lipid nanoparticle mediated de-
livery of mod. mRNA into target cells in vivo by various
routes provided an efficient translation [23].

Nuclease-encoding mRNA: a novel strategy for permanent cure
Due to the transient expression of mod. mRNA, its use will
be difficult in the treatment of chronic genetic diseases, as
they require longer-term solutions. To circumvent this,
nuclease-encoded chemically mod. mRNA (nec-mRNA)
has been described as a novel delivery paradigm. Expres-
sion of mRNA encoding zinc-finger nucleases (ZFNs) or
transcription activator-like effector nucleases (TALENS) re-
sulted in successful genome editing and subsequently the
correction of surfactant protein B (SP-B) deficiency in mice
[13]. The principle of nec-mRNA is illustrated in Fig. 2.
Due to the rapid yet transient burst of expression of nec-
mRNA, off-target effects will be minimized when com-
pared to long-term expression by viral or plasmid vectors.
In addition, the expression kinetics can be fine-tuned by
different combinations of chemical modifications [24].
Thus, the proposed strategy might provide permanent gene
correction by targeting stem cells. Moreover, the use of
single-stranded oligodeoxynucleotides (ssODNs)—short,
single-stranded DNA-based repair templates—for gene tar-
geting of short nuclear polymorphisms (SNPs) would com-
pletely abrogate the need for viral vectors, resulting in
patient-specific gene correction and thus an ultimate cure.

Proof of principle: use of mod. mRNA to treat pediatric
diseases

Cystic fibrosis, SP-B deficiency, asthma, B thalassemia,
and sickle cell anemia are all genetic diseases that can
affect children. With its potential for protein replacement
and gene correction, mod. mRNA presents a powerful
tool to minimize or even cure these conditions. The next
part of the review will focus on the present evidence of
positive results using mod. mRNA against genetic disease.

SP-B deficiency
Surfactant protein B (SP-B) is a pulmonary surfactant
protein that reduces surface tension and prevents the
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collapse of alveoli. Congenital SP-B deficiency is a rare,
lethal, and monogenic disease induced mostly by loss-
of-function mutations on both SFTPB alleles. The ad-
ministration of surfactants, corticosteroids, and other
immunosuppressants, repeated lung lavage, and ultimately
lung transplantation are the only therapeutic interventions
currently available. However, these treatments show poor
efficacy and outcome [25]. In mice, repeated administra-
tion of mod. SP-B mRNA by intratracheal high-pressure
spraying significantly increased SP-B protein levels, result-
ing in the elimination of pulmonary inflammation and a
significant increase in survival [9]. Furthermore, a single
intratracheal application of nec-mRNA combined with
AAV-encoded repair template increased the life span of
SP-B deficient mice due to genetic correction in alveolar
type II cells [13].

Cystic fibrosis

Cystic fibrosis (CF) is the most life-limiting monogenic
disease in Caucasian populations and is caused by a mu-
tation in the gene that encodes the cystic fibrosis trans-
membrane and conductance regulator (CFTR). CF is
characterized by altered epithelial mucus secretion in
several organs, most severely in the pulmonary epithe-
lium [26]. In spite of the various clinical trials performed
with viral and nonviral vector-mediated gene therapy ap-
proaches in CF patients, these techniques have shown
low efficacy [27]. Therefore, a viable alternative therapy
has yet to be developed, e.g., via repeated administration
of therapeutic nucleic acids that penetrate the mucus of
CF patients. Modified mRNA has already shown great
potential to increase protein expression in the lungs [9].
It is estimated that only 10 % of normal levels of CFTR ac-
tivity is sufficient to avoid the disintegrating effects seen in
CF [28] making mod. mRNA a promising tool to restore
adequate CFTR expression in the lungs. In addition, the
transfection of chemically modified CFTR mRNA in mu-
tated CFBE41o- cells restored cAMP-induced CFTR cur-
rents similar to wild type cells due to the mRNA-driven
replacement of functionally active channels [20].

Pediatric asthma

Asthma is the most common chronic inflammatory
disorder in childhood and is associated with airway
hyper-responsiveness leading to recurrent episodes of
wheezing, breathlessness, chest tightness, coughing, and
airflow obstruction. However, in children below 5 years
of age, clinical symptoms of asthma differ individually in
a nonspecific manner. Usually, inhalation of corticoste-
roids and bronchodilators is the first choice when it comes
to the treatment of asthma. However, some patients face
the clinical picture of corticosteroid resistance as a conse-
quence to repeated corticosteroid administration. In this
case, treatment by means of gene replacement could be an
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Fig. 2 SNP correction using nec-mNRA and ssODNs. To facilitate site-specific gene correction of single nucleotide polymorphisms (SNPs), nec-mRNA
and single-stranded oligodeoxynucleotides (ssODNs) can be efficiently administered to target cells (e.g., lung cells) by complexing both
into positively charged nanoparticles for enhanced cellular uptake. Once in the cell, nec-mRNA gets translated into a functional nuclease

that subsequently translocates to the nucleus and binds at sequence-specific sites next to the SNP. Generating a double-strand break (DSB), the
genomic mutation can be corrected in the presence of ssODNs by means of homology-directed repair, resulting in proper gene function

alternative route and possibly benefit these patients. One
such target for gene therapy would be to influence Th2
cytokine reactions [29] by inducing regulatory T cells.
Mays et al. demonstrated that administration of modified
Foxp3 mRNA in a time- and site-specific fashion in mur-
ine lungs prevented allergic asthma in vivo, while sup-
pressing Th2 responses [15].

B-Thalassemia and sickle cell disease

As one of the most common single-gene defects
across the globe, B-thalassemia represents a significant
burden for affected patients and families. Driven by
various mutations in the [(-globin gene cluster, the
disease is characterized by a reduction or absence of
B-globin gene expression. Ultimately, this results in a
lack of functional adult hemoglobin (HbA), which is
composed of two alpha- and two beta-globin chains
(azPs) [4]. Without sufficient hemoglobin, red blood
cells develop abnormally, leading to severe anemia.
This imbalance in a- and [B-globin production also

hinders erythroid precursor maturation, resulting in
ineffective erythropoiesis.

Mutations in the human hemoglobin beta (HBB) gene
cause [(-thalassemia and those that are homozygous for
a given mutation suffer severe anemia. In children,
anemia begins to develop within the first month of life
and infants fail to thrive. Currently, allogeneic bone mar-
row transplantation and hematopoietic stem cell transfu-
sion are the only available curative schemes; in turn,
these treatments are limited to a minority of patients
due to the availability of histocompatible donors. However,
gene therapy based on autologous transplantation of genet-
ically corrected hematopoietic stem cells (HSCs) shows
high potential as a cure, since it is not restricted to histo-
compatible donors and immunosuppression. The lentiviral
delivery of a normal HBB gene into hematopoietic stem
cells could be shown to result in therapeutic benefit [30].
However, viral vectors always possess the risk of causing
insertional mutagenesis. Recent developments in gene cor-
rection using nec-mRNA encoding proteins such as ZFNs,
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TALENS, and CRISPR-Cas9 have shown high potential to
effectively correct genes while mitigating the danger of in-
ternal mutagenesis. It has been reported that using
CRISPR-Cas9 (with modified mRNA) to cleave the HBB
gene and piggyBac for homologous recombination selec-
tion can correct two different p-thalassemia mutations and
thus reduce the genetic status to a heterozygous state,
where patients are only mildly anemic and capable of lead-
ing normal lives [31].

Sickle cell disease is caused by mutations in the
protein-coding HBB gene. Replacement of A to T results
in valine instead of glutamic acid. Both copies of the
gene need to contain this particular mutation to cause
anemia. A recent report suggests that seamless HBB
gene correction is possible using TALENSs and piggyBac
[32]. Together with its precise correcting efficiency and
high modularity, these nucleases represent a promising
tool to correct such a SNP [33].

Future directions

mRNA has tremendous potential for both gene therapy
and gene correction approaches. However, as with every
new technology, a number of methodological improve-
ments and specific challenges need to be addressed. The
chemical modification needs to be adapted to the target
cell type and to the transfection reagent used. In addition,
the incorporation of chemically modified nucleosides into
mRNA increases protein stability but decreases transla-
tional efficiency [24]. Thus, it is recommended that mRNA
formulations undergo extensive optimization to achieve a
therapeutic benefit. Furthermore, in order to achieve per-
manent cures for genetic diseases as that mentioned above,
the nec-mRNA and repair templates must be directed to
stem/progenitor cells by targeted cell therapy.

In conclusion, the therapeutic potential of mod. mRNA
has been rapidly recognized for the treatment of pediatric
diseases. However, further improvements in systemic de-
livery, consideration of different cell types or different or-
gans, and effective chemical modifications for each such
type are pivotal for efficient utilization. Combining efforts
to overcome cell turnover together with appropriate ani-
mal models will enable the field to make continued pro-
gress and to reach the step into the clinic.
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