Mack et al. Molecular and Cellular Pediatrics (2015) 2:3
DOI 10.1186/s40348-015-0014-6

® Molecular and Cellular Pediatrics

a SpringerOpen Journal

REVIEW Open Access

The role of chitin, chitinases, and chitinase-like
proteins in pediatric lung diseases

Ines Mack', Andreas Hector?, Marlene Ballbach?, Julius Kohlhaufl?, Katharina J Fuchs®, Alexander Weber®,

Marcus A Mall* and Dominik Hartl*”

Abstract

AMCase; CHITT; YKL-40; BRP-39; Fungi; M2 macrophages

Chitin, after cellulose, the second most abundant biopolymer on earth, is a key component of insects, fungi, and
house-dust mites. Lower life forms are endowed with chitinases to defend themselves against chitin-bearing pathogens.
Unexpectedly, humans were also found to express chitinases as well as chitinase-like proteins that modulate immune
responses. Particularly, increased levels of the chitinase-like protein YKL-40 have been associated with severe asthma,
cystic fibrosis, and other inflammatory disease conditions. Here, we summarize and discuss the potential role of chitin,
chitinases, and chitinase-like proteins in pediatric lung diseases.
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Introduction

The role of chitin and chitinases has been firmly estab-
lished in the field of plant and microbial immunity by
demonstrating that host-derived chitinases cleave chitin
to protect against invading chitin-bearing pathogens, such
as fungi. Although mammals lack endogenous chitin or
chitin synthases, chitinases and chitinase-like proteins are
endogenously expressed in their lung and other organs.
Particularly, chitinase-like proteins have been described
as dysregulated in a variety of diseases characterized by
chronic inflammation and tissue remodeling, yet their
potential role for humans has just recently begun to
evolve [1,2]. Chitin is a major component of a variety of
allergy-triggering environmental components, including
house-dust mites or fungal spores, and fungal asthma
is increasingly appreciated as an under-diagnosed dis-
ease entity [3]. Thus, an understanding of the complex
immunological and pathophysiological implications of
chitin-chitinase interactions in the human body is of
high relevance for identifying new biomarkers and thera-
peutic targets for fungal diseases and other conditions,
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where chitin-coated microbial derivatives play a critical
role. Here, we provide an overview of an emerging, yet
complex field of research. Of particular interest are inter-
species differences with resulting specific nomenclatures.
Subsequent to an overall introduction of chitin, the role
of chitinases and chitinase-like proteins in pediatric lung
diseases are reviewed, leading up to a summary of ideas
how these mechanisms could be exploited to improve
diagnostics and therapeutics in lung diseases in childhood
and beyond (Figure 1).

Review

Chitin

Chitin, a polymer of N-acetylglucosamine and the second
most abundant polysaccharide in nature following cellulose,
is an essential component of fungi, house-dust mites, exo-
skeletons of crabs, shrimp and insects, parasitic nematodes,
and digestive tracts of many insects [1]. Chitin protects
these microbes from their environment, and its turnover
is regulated by biosynthesis and degradation through
endogenous chitinases.

The first immune stimulatory activity of chitin and
chitin derivatives in mammals was discovered and exten-
sively explored in the middle to late 1980s, as reviewed
recently [2,1]. These early studies clearly indicated that
chitin has important immunologic effects in vitro and
in vivo, initially highlighted by Shibata et al. who
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Figure 1 The proposed role of chitin, chitinases and chitinase-like proteins (CLPs) in lung diseases. Chitin is a common component of
allergy-triggering environmental components, including fungal spores and house-dust mites, which trigger an innate immune response, including
chitinases (cleaving chitin; scissors) and chitinase-like proteins (binding, but not cleaving chitin; damaged scissors). Chitinases and chitinase-like proteins
are mainly secreted by neutrophils, alternatively activated macrophages (M2 macrophages) and epithelial cells. The interplay of M2 macrophages,
neutrophils, and epithelial cells drives inflammation and remodeling in chronic lung diseases, particularly asthma, cystic fibrosis, and COPD.

demonstrated that chitin activates peritoneal/alveolar
macrophages and natural killer (NK) cells to express a
number of pro-inflammatory cytokines such as interleukin-
1B (IL-1p), colony-stimulating factor (CSF), and gamma
interferon (IFN-y) [4]. More recent studies by Reese et al.
addressed the in vivo immune effects of chitin in mice [5].
They noted that after several hours of chitin exposure,
innate immune cells were recruited to the lung and/or the
peritoneum. These studies also demonstrated that chitin
induced alternative macrophage activation and that
macrophage depletion with clodronate liposome treat-
ment prevented the recruitment of eosinophils. Van
Dyken et al. further demonstrated that fungal chitin
from asthma-associated home environments induced
allergic eosinophilic lung inflammation [6]. Collectively,
these studies strongly suggest that chitin can contribute
to the development of allergic type 2 (Th2) inflamma-
tion by activating innate immune cells. Beyond these
findings, chitin has also been proposed to serve as an
immunoadjuvant. In murine asthma models, Shibata et al.
demonstrated that orally administered chitin suppressed
the production of Th2 cytokines and IgE [7] and, when
used as an adjuvant, chitin caused similar effects as a Thl-
promoting adjuvant [8,9]. Accordingly, one can speculate
that the immune system senses chitin and that chitin can
skew the Th1/Th2 immune response in a bidirectional way.

The studies noted above suggest that the size of the
chitin fragment is a crucial determinant of the effector
responses that it elicits. This can be seen in comparisons
of large chitin polymers that are biologically inert and
intermediately sized fragments, which trigger IL-17,
IL-23, and TNF-a production [1], while even smaller
fragments enhance the production of the anti-inflammatory
cytokine IL-10. Therefore, chitin has size-dependent effects
on murine immune cell function and may bind to different
receptors in a size-dependent manner, similar to findings in
plants [10,11]. The observation that large chitin polymers
are inert, smaller fragments are pro-inflammatory, and even
smaller fragments exert an anti-inflammatory effect allows
for an interesting hypothesis regarding the importance
of the size-dependent effects of chitin in this response.
However, in all of these studies, it is difficult to rule out
that chitin preparations contained mixtures of differently
long chitin polymers or that ‘large’ chitin preparations
were containing contaminating ‘smaller’ chitin fragments.
Clearly, a more thorough study using well-defined chitin
fragments is warranted. Collectively, it is tempting to

speculate that chitin recognition by pattern recognition
receptors triggers the induction of chitinases, leading to
the generation of small-sized chitin particles that are taken
up by the host cell. Recently, fungal chitin was found to
dampen inflammation through IL-10 induction mediated
by activation of the intracellular receptors NOD2 and
TLR9 [12]. Despite these intriguing insights, the precise
molecular recognition principles of chitin perception re-
main incompletely understood. Interestingly, this hypoth-
esis is very similar to the established biology of another
polysaccharide, hyaluronin that also serves as an alarm
signal after degradation. Thus, the ability of appropriately
sized polysaccharides to induce inflammation may be a
more general principle of glycobiology [2,1]. When viewed
in combination, chitin is a central component of potential
pro-allergic microbes (e.g., Aspergillus fumigatus and
house-dust mite) and has been shown to drive Th2-
associated immune responses. Mechanisms that interfere
with chitin metabolism are therefore of high relevance
for allergic diseases and infections with chitin-bearing
pathogens such as fungi.

Chitinases and chitinase-like proteins

Chitin-degrading enzymes, known as chitinases, are pro-
duced by humans and other mammals and are part of
the 18-glycosyl-hydrolase family that encompasses both
enzymatically active chitinases and chitinase-like proteins,
the latter also termed chi-lectins, which lack enzymatic
activity. In humans, acidic mammalian chitinase (AMCase),
chitotriosidase, oviductin, and human cartilage glycoprotein
(HcGP)-39/YKL-40 and YKL-39 have been described, while
YM-1, YM-2, AMCase, oviductin, and breast regression
protein (BRP-39) have been identified in mice [13,1,14-17].
Humans express two functional chitinases, chitotriosidase
(CHITI) and AMCase (CHIA) with an acidic pH optimum,
both able to degrade chitin polymers. In mammals, chiti-
nases [18,19] and chitinase-like proteins [20] are mainly
expressed and secreted by phagocytes (mainly neutrophils
and macrophages) and are induced at sites of inflammation,
infection, and tissue remodeling, suggesting that these pro-
teins play active roles in anti-infective defense and repair
responses. Specifically, both chitinases and chitinase-like
proteins have been linked to an alternative activation (M2)
phenotype of macrophages [21,1,22], which is found in
asthma and other chronic diseases, such as cystic fibrosis
(CF), providing a rationale for chitinases and chitinase-like
proteins to play a role in these disease conditions. While
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chitotriosidase is used as disease biomarker for Gaucher
disease, a disease characterized by the accumulation of
lipid-laden macrophages, acidic mammalian chitinase
has been linked to allergic asthma and hypersensitivities
[23]. However, the major evidence for an involvement in
lung diseases exists for chitinase-like proteins. Therefore,
we will focus on their role in pediatric lung diseases in the
chapters below.

The chitinase-like protein YKL-40 and its involvement in
lung diseases

YKL-40, or also called HcGP-39 or BRP-39 in mice,
lacks measurable enzymatic chitinase activity, due to
mutations in its highly conserved putative active sites [17].
In mice, BRP-39 has been associated with cell growth,
breast cancer, and tissue remodeling. Recent evidence
from BRP-39 knock-out mice indicates that BRP-39 plays
a role in T-cell, macrophage and dendritic cell responses
as well as cell apoptosis and tissue repair [21,1]. In human
cells, HcGP-39/YKL-40 has been shown to regulate apop-
tosis/proliferation/cell survival, MAPK, and cytokine
pathways [24,2].

The first indication that YKL-40 could be linked to
human lung diseases came from a multi-center study
quantifying YKL-40 serum levels in 253 adult patients
with asthma [25]. This study showed that YKL-40 serum
levels were mainly increased in adult patients with severe
asthma and correlated with disease severity and airway
remodeling. These studies in adults were, on the one
hand, confirmed for children with severe, therapy-
resistant asthma [26], but, on the other hand, challenged
by another study [27]. Besides increased levels of YKL-40,
elevated bona fide chitinase activities were also found in
bronchoalveolar-lavage (BAL) fluids from children with
asthma [28]. YKL-40 was also found to be increased in
BAL fluid after segmental allergen challenge, indicating
local production of this chitinase-like protein in response
to allergens [29]. Gavala et al. confirmed this finding and
further demonstrated that segmental allergen challenge
also increased chitinase activities [30]. Clinically, YKL-40
serum levels remained increased in patients in spite of
long-term inhaled corticosteroids, which could imply that
YKL-40 production is resistant to current asthma treat-
ments and might represent an alternative therapeutic
target for severe asthma. YKL-40 is mainly released by ac-
tivated neutrophils [20], and neutrophilic asthma is well
known to be corticosteroid-resistant [25]. Thus, increased
YKL-40 levels may be a hallmark of neutrophilic asthma.
A follow-up study analyzing single nucleotide polymor-
phisms (SNPs) in the YKL-40/CHI3LI gene showed a
genetic association with increased susceptibility to asthma,
increased bronchial hyperresponsiveness, and reduced
lung function [31]. The role of YKL-40/CHI3L1 SNPs for
asthma was further confirmed in a Taiwanese population
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[32]. Another study found a different YKL-40/CHI3LI
variant associated with asthma [33]. Given the enigmatic
role of YKL-40, the functional importance of these vari-
ants awaits further investigation. Moreover, a Chinese
study found that YKL-40 levels were increased in asth-
matic patients and correlated with exacerbation, eosino-
phils, and immunoglobulin E [34], while a study from
Poland found increased YKL-40 levels in asthma, but no
correlation with disease severity or total IgE levels [35].
Besides a positive correlation between YKL-40 levels and
age in subjects with asthma across all age groups, Santos
et al. found no difference in circulating YKL-40 levels
among asthma severities in children nor a correlation with
IgE levels [27]. When viewed in combination, some but
not all studies support the notion that YKL-40 is increased
in severe and/or neutrophilic asthma, yet the clear rela-
tionship with age/disease progression (pediatric vs adult)
and atopy remains to be defined in future studies.

Beyond asthma, other pulmonary or lung-associated
disease conditions where YKL-40 levels were found to
be increased were chronic obstructive pulmonary disease
(COPD) [36,37], idiopathic pulmonary fibrosis [38],
tuberculous pleural effusions and pneumonia [39], small-
cell lung cancer [40], non-small-cell lung cancer [41],
bronchiolitis obliterans syndrome [42], hyperoxic acute
lung injury [43], sarcoidosis [44], allergic rhinitis [45],
and CF lung disease [46]. Despite the heterogeneity of
these disease conditions, alternative (M2) macrophage
activation is a common feature of the majority of them,
suggesting that increased YKL-40 levels reflect M2 macro-
phage polarization and disease conditions featuring M2
activation [24,22,2,47].

In CE a chronic neutrophilic inflammatory disease
[48,49], YKL-40 BALF levels were found to reflect airway
inflammation and infection in early CF lung disease [50]
and correlated inversely with lung function in adult CF
patients, where YKL-40 levels were also found to be
increased systemically [46]. The potential role of YKL-40
for the pathogenesis of CF lung disease is further sup-
ported by findings in Scnnlb-transgenic mice, a murine
model of CF-like lung disease [51,52]. In this model,
airway-specific overexpression of the p-subunit of the
epithelial Na® channel ENaC mimics airway surface
dehydration characteristic for CF airways and produces a
CE-like lung disease with early onset of mucus obstruc-
tion, chronic airway inflammation, slowed bacterial
clearance, and progressive structural lung damage [53].
Similar to patients with CF, levels of the murine
homologue of YKL-40, BRP-39, were significantly in-
creased in BALF and showed an inverse correlation
with pulmonary function in Scnnlb-transgenic mice
[46]. Collectively, these studies suggest that YKL-40/
BRP-39 may be implicated in the pathogenesis of chronic
airway inflammation and airflow obstruction and thus
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serve as a potential biomarker of disease severity in
patients with CF.

Recent studies in this mouse model of CF-like lung
disease also provided first mechanistic insights on how
chitinases/chitinase-like proteins (CLPs), including BRP-
39, may be upregulated in CF lung disease. These studies
demonstrated that CF-like airway surface dehydration
causing mucociliary dysfunction and mucus obstruction
[54,55] provides a robust stimulus for macrophage acti-
vation, even when Scnnlb-transgenic mice are kept in a
germ-free environment [54, 56]. More recently, a series
of gene expression studies identified signatures of alter-
natively activated macrophages (M2), including Ym1, Ym2,
and BRP-39, in whole lungs and isolated macrophages
from Scnnlb-transgenic mice [57, 58]. These results
suggest alternative macrophage activation in mucostatic
airways as a mechanism underlying elevated expression
of a range of chitinases and CLPs, even in the absence
of chitin-containing parasites or allergens, in the air-
ways of patients with CF and potentially other muco-
obstructive lung diseases. While the pathogenic role of
chitinases/CLPs in (dys)regulation of inflammation in
CF airways remains poorly understood, observations in
lungs from Scmmnlb-transgenic mice demonstrate that
some proteins of the chitinase/CLP family, such as YmI
and Ym2, are expressed at such high levels that they
precipitate and form sharp crystals often greater than
100 pm in size [54]. These may cause chronic mechan-
ical irritation and injury of airway epithelial cells and
phagocytes thus contributing to chronic airway inflam-
mation. Additionally, it is intriguing to speculate that
such crystals may activate the NLRP3 inflammasome, a
pattern recognition receptor able to trigger inflam-
mation in response to other crystalline or aggregated
endogenous substances such as cholesterol or uric acid
crystals [59,60,61].

Beyond asthma and CF, circulating YKL-40 has been
further associated with decline of lung function in the
general population and has been proposed as a bio-
marker of susceptibility to the long-term effects of
cigarette smoking [62]. Studying chitinases in New York
City firefighters after World Trade Center exposure
revealed that increased serum chitotriosidase reduced
the odds of developing pulmonary obstruction after
World Trade Center-particulate matter exposure and was
associated with recovery of lung function. The underlying
mechanisms remain unclear [63]. As chitin is a structural
component of fungi, which are well known for their role
in environmental asthma, a study investigated whether
the exposure to environmental fungi modulates the
effect of chitinases in individuals with asthma. The
study demonstrated that environmental exposure to
fungi modified the effect of CHITI SNPs on severe
asthma exacerbations [64].

Page 5 of 8

In order to dissect the cellular sources of YKL-40 in
human airways and the mechanisms regulating YKL-40
expression, Park and coworkers identified human airway
epithelial cells as a source of YKL-40 and demonstrated
that mechanical stress potently induces CHI3L1 expres-
sion leading to increased secretion of YKL-40 protein in
an EGFR and MEK1/2-dependent pathway, suggesting
that mechanical stress contributes to enhanced YKL-40
levels in asthmatic lungs [65]. A further mechanistic study
found that YKL-40 increased the proliferation and migra-
tion of bronchial smooth muscle (BSM) cells through
PAR-2-, AKT-, ERK-, and p38-dependent mechanisms
and demonstrated that YKL-40 epithelial expression was
positively correlated with BSM mass in asthma [66]. Other
studies showed that YKL-40 induced IL-8/CXCL8 expres-
sion from bronchial epithelium via MAPK (JNK and ERK)
and NF-kB pathways [67]. Taken together, these results
suggest that YKL-40-mediated IL-8 production could be
related to BSM remodeling [68]. Further studies showed
that the allergen ovalbumin increased YKL-40 expression
in tracheal epithelial cells [69] and demonstrated that
YKL-40 increased mucin5AC production in human bron-
chial epithelial cells [70]. Collectively, these studies extend
the view that YKL-40 is mainly a marker of neutrophilic
inflammation by demonstrating modulatory effects of this
chitinase-like protein on airway epithelial cells. Despite
these intriguing insights into the biological effects of
chitinase-like proteins, their precise functional role in
biological processes and disease conditions in humans
still remains largely unclear.

Conclusions

Chitin, chitinases, and chitinase-like proteins remain
enigmatic terms for human diseases. However, after the
second look into the pathophysiology of allergic and
chronic lung diseases, these ancient, insect glycoprotein-
associated pathways attract high relevance as potential
biomarkers and therapeutic targets. Particularly, fungal
chitin-linked asthma is increasing, but treatment options
and successful clinical trials are scarce, necessitating fur-
ther therapeutic developments. Before those approaches
can be applied clinically, several key questions remain to
be answered:

e How is chitin recognized by the human immune
system? Is it a novel pattern recognition receptor
ligand? And if so, can this interaction be targeted
and exploited therapeutically?

e What is the primary role of enzymatically active
chitinase found in the human body? To defend
against chitin-bearing pathogens or to skew the
immune system?

e Is a dysregulation of chitin sensing or YKL-40
induction pathways associated with altered
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susceptibility for diseases like fungal asthma or
house-dust mite allergy?

e Is YKL-40 a potential biomarker of severe asthma, a
marker of neutrophilic innate immune activation, or a
marker reflecting tissue remodeling (or all of these)?

e Does YKL-40 play a causative role in these disorders?
Can YKL-40 be neutralized pharmacologically? And if
so, which diseases would benefit?

e Considering YKL-40 as a therapeutic target in human
diseases, what is the physiologic function of this
protein?

These issues remain to be solved and pave the way for
an exciting novel field in pediatric immunology, bridging a
gap between insects, fungi, immune cells, and the lung.
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