MEETING ABSTRACT **Open Access** # Evidence that Fgf10 offers therapeutic opportunities after hyperoxic lung injury in mice CM Chao^{1,3*}, D Al Alam², S Schermuly³, H Ehrhardt¹, KP Zimmer¹, S Bellusci³ From 50th Workshop for Pediatric Research Gottingen, Germany. 20-21 March 2014 Bronchopulmonary dysplasia (BPD), a chronic lung disease of preterm infants, is characterized by impaired alveolar growth and pathologic vascularization. #### **Aims** To investigate the role of *Fgf10* in alveologenesis and during/after hyperoxic lung injury. #### Methods - 1) 10 weeks old $Fgf10^{+/-}$ mice (50% Fgf10 expression compared to WT) in normoxic condition: Lung function and morphometric analysis. - 2) BPD model: - a) $Fgf10^{+/-}$ and $Fgf10^{+/+}$ mice were exposed to 85% O_2 from P0-P8. Morphometric analysis and α -Actin/vWF staining were performed at P3. - b) $Rosa26^{rtTA/+}$; tet(O)Fgf10 (gain-of-function) mice were exposed to 85% O₂ from P0-P8. From P9-P45 the pups were exposed to normoxia and fed either with normal food (control) or doxycycline food (experimental) to activate the transgene Fgf10. Morphometric analysis was carried out at P45. - 3) Tolerance study: Rosa26^{rtTA/+};tet(O)Fgf10 and WT mice (both 10 weeks old) were exposed to doxycycline for 2 weeks. Then survival rate, histology, Ki67 and TUNEL staining were performed. #### **Results** - 1) Fgf10^{+/-} mice under normoxic condition have worse lung function and lung structure compared to WT mice. - 2) All $Fgf10^{+/-}$ mice die from hyperoxic injury due to increased lung injury and vascular malformation. - 3) Overexpression of *Fgf10* after hyperoxic injury leads to improvement of lung structure compared to control group without overexpression. 4) *Fgf10* overexpression after hyperoxic injury does not increase mortality and side effects (weight loss, mucosal proliferation due to hypercellularity with no impact on apoptosis) are reversible. #### Conclusion Fgf10 attenuates hyperoxic lung injury, is well tolerated and should be further studied as a potential therapeutic for BPD. #### Authors' details ¹ Justus-Liebig-Universität, Gießen, Germany. ² Saban Research Institute, Los Angeles, USA. ³ Excellence Cluster Cardio-Pulmonary System, Gießen, Germany. Published: 11 September 2014 doi:10.1186/2194-7791-1-S1-A27 Cite this article as: Chao *et al.*: Evidence that Fgf10 offers therapeutic opportunities after hyperoxic lung injury in mice. *Molecular and Cellular Pediatrics* 2014 1(Suppl 1):A27. ## Submit your manuscript to a SpringerOpen journal and benefit from: - ► Convenient online submission - ► Rigorous peer review - ▶ Immediate publication on acceptance - ▶ Open access: articles freely available online - ► High visibility within the field - ► Retaining the copyright to your article Submit your next manuscript at ► springeropen.com ¹Justus-Liebig-Universität, Gießen, Germany Full list of author information is available at the end of the article