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Abstract

Impaired cellular innate immune defense accounts for susceptibility to sepsis and its high morbidity and mortality
in preterm infants. Leukocyte recruitment is an integral part of the cellular immune response and follows a well-
defined cascade of events from rolling of leukocytes along the endothelium to firm adhesion and finally
transmigration which is concerted by a variety of adhesion molecules. Recent analytical advances such as fetal
intravital microscopy have granted new insights into ontogenetic regulation and maturation of fetal immune cell
recruitment. Understanding the fetal innate immune system is essential for targeted prevention and therapy of
premature infants with severe infections or disorders of the immune system. This review gives an overview of the
basic principles of leukocyte recruitment, particularly neutrophil trafficking, and its development during early life
and highlights technical limitations to our current knowledge.
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Introduction
Prematurity is the most prominent risk factor for neo-
natal diseases and death [1]. Despite medical progress in
newborn medicine, mortality remains high since the num-
ber of very low birth weight infants (≤1500 g) increases
globally [2–4]. Especially among very immature infants,
infection and sepsis are still the leading causes for mor-
tality and morbidity [2, 5]. This may in part be explained
by the immaturity of the innate immune system, which
preterm infants (<37 weeks of gestation) heavily rely on as
the adaptive immune system is not yet formed [6]. Intra-
uterine fetal immunosuppression plays a key role in
preventing excessive adverse immune reactions at the
feto-maternal placental border. Yet, this beneficial intra-
uterine feature proves disadvantageous in preterm infants
lacking maternal immune protection while being exposed
to high levels of pathogens. Up to 60 % of extremely pre-
mature infants (<28 weeks of gestation and/or <1000 g
birth weight) may suffer from bacterial sepsis in contrast
to less than 5 % of late preterm and term neonates [7],
which indicates that the immune response evolves

throughout gestation. The mortality risk sharply decreases
with each additional week of gestation and rise in birth
weight [4]. Researchers are only beginning to understand
the complex ontogenetically regulated maturation of the
fetal immune system and how to alter or support this
transition.
The impaired function of the premature immune sys-

tem has multiple causes: lack of immunoglobulins [8]
and antimicrobial peptides [9], low levels of circulating
complement factors, and lack in total number and mat-
uration of immune cells [10]. Neutropenia and immature
neutrophil trafficking partially account for the high
susceptibility to opportunistic and bacterial infections
[11]. Despite increasing evidence for a highly complex
role of leukocytes in both innate and adaptive immunity,
this short review focuses on the ontogenetic development
of leukocyte recruitment, in particular polymorphonuclear
neutrophils (PMN), as one key component of innate
immunity in preterm neonates.

Leukocyte recruitment
Leukocyte recruitment is an integral part of the cellular
immune response and follows a defined cascade of
events [12]. After recognition of invading pathogens,
leukocytes are stimulated with the primary purpose of
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eliminating the inflammatory source. This multistep
process starts with the capture of circulating leukocytes
from the blood stream, mostly in postcapillary venules
in close proximity to inflamed tissue. A simplified
version of the leukocyte recruitment cascade exemplified
for neutrophils is displayed in Fig. 1 (developmental
aspects are indicated by footnotes and discussed in the
next chapter).
The initial step of leukocyte rolling is mediated by

selectins, which bind to their respective ligands such as
P-selectin glycoprotein ligand 1 (PSGL-1), CD44, or
E-selectin ligand 1 (ESL-1) [13, 14]. The three known
members of the selectin family are L-, P-, and E-selectin.
After activation of endothelial cells, adhesion molecule
upregulation drives leukocyte adhesion to the vessel wall.
The interaction of selectins and chemokines with their
respective receptors triggers integrin activation (e.g. macro-
phage antigen 1 (Mac-1), lymphocyte function-associated
antigen 1 (LFA-1)) which in turn bind to their endothelial
ligands (intercellular adhesion molecule 1 (ICAM-1),
vascular cell adhesion molecule 1 (VCAM-1), receptor for
advanced glycation endproducts (RAGE)) [15] leading to
leukocyte deceleration and finally adhesion [16]. The firm
leukocyte adhesion is crucially mediated by tight bonds
between integrins and their ligands balanced by permanent
inside-out integrin signaling (intracellular signaling
activates integrin on cell-surface) and outside-in integrin
signaling (ligand-induced activation of intracellular sig-
naling pathways) [12, 17–19]. Subsequently, spreading is
induced by integrin-mediated rearrangement of actin
cytoskeleton followed by crawling along the endothelium in

order to find a designated site to transmigrate from vessel
into inflamed tissue [20, 21]. Intravascular chemokine gra-
dients guide leukocytes to sites of damage [22]. Transmi-
gration depends on many different factors like distribution
and density of integrin ligands, chemoattractants, and other
cytokines as well as adhesive ligands [23]. Two different
routes of transmigration are known: paracellular at endo-
thelial borders (70–90 %) [14] or transcellular. After trans-
endothelial cell migration (TEM), leukocytes display an
altered phenotype, enhanced survival, and enhanced
ability to eliminate pathogens [13]. For sufficient diape-
desis, a weakening of endothelial junctions and an in-
crease in cytosolic free calcium is required [24]. The
site of transmigration may depend on the condition of
junctions, so leukocytes are likely to take the nearest
route with least resistance in an acceptable range. The
key molecules involved in the leukocyte recruitment
cascade are summarized in Table 1 based on a recent
review by Vestweber [25].

Maturation of fetal leukocyte recruitment
Understanding the fetal innate immune system is essen-
tial for targeted prevention and therapy of premature in-
fants with severe infections or disorders of the immune
system. The high vulnerability of preterm neonates to
suffer from severe infections and sepsis can partially be
attributed to impaired leukocyte recruitment early
during fetal life [11]. The observation of reduced fetal
leukocyte trafficking and chemotaxis is mainly explained
by diminished expression of leukocyte adhesion mole-
cules and production of cytokines at this developmental
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Fig. 1 Leukocyte recruitment cascade. The multistep recruitment cascade is illustrated using the example of a neutrophil. It starts with the
capture of circulating neutrophils from the blood stream, followed by selectin-dependent rolling and chemokine- and integrin-dependent
adhesion. After extravasation, the neutrophil follows chemokine gradients through the tissue to the point of damage/inflammation. Developmental
alterations of adhesion molecule expression are indicated by footnotes as follows (fetal/premature levels were compared to those of adults): (a) L-
selectin - reduced [26, 33, 37, 45, 46] and unchanged [47], E-selectin - reduced [29, 31, 38], P-selectin - reduced [29, 34, 38, 39]; (b) PSGL-1 - reduced
[29, 31, 36]; (c) Mac-1 - reduced [26, 31, 36], unchanged [30, 33], and increased [37]; (d) LFA-1 - reduced [26, 45] and unchanged [30, 31, 36, 37]; (e)
ICAM-1 - reduced [29, 31, 38]; (f) CXCR2 - unchanged [31]
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stage [26–28]. Expression profiles of the most relevant
leukocyte adhesion molecules during fetal life is com-
pared to that of adults in Table 2 and also depicted in
Fig. 1 by respective footnotes.
Sperandio et al. showed in vivo that neutrophil rolling

and adhesion in murine yolk sac vessels is strongly
reduced at early gestational ages and increases through-
out gestation [29]. These observations were validated in
human preterm and term leukocytes in vitro using flow
chamber experiments as a rule-in/rule-out approach
[30]. In the same experimental setting, it has been
shown that RAGE, a key metabolic receptor of diabetic
patients, controls neutrophil adhesion in preterm and
term infants [30].
Postnatal maturation of immune response and leukocyte

recruitment is driven by multiple new environmental
factors [31]. Several studies describe significantly reduced
neutrophil transmigration and chemotaxis in neonates
compared to adults [11, 29, 32]. Notably, cellular immun-
ity of preterm infants matures slower and later than in
term infants [11]. Expression of L-, P-, and E-selectin was
reported to be reduced in mature neonates in vitro and in

vivo compared to infants and adults [31, 33, 34]. On
the other hand, posttranslational glycosylation of selec-
tin ligands is augmented during the neonatal period
[35]. In most studies, fetal expression of integrins such
as Mac-1 and LFA-1 were described to be reduced or
equal compared to adults [26, 30, 31, 33, 36, 37]. Simi-
lar observations have been described for other adhesion
molecules such as ICAM-1/-2, VCAM-1, VLA4, and
PSGL-1 [29, 31, 38, 39]. Although fetal expression of
the majority of adhesion molecules is low when com-
pared to term infants and adults [11, 26, 36], others,
like CXCR2, PECAM-1, and VE-cadherin (and LFA-1),
are equally expressed in premature and mature neo-
nates and adults (Table 2) [29, 31, 37].
Taken together, the gestational age-dependent up-

regulation of adhesion molecules leads to functional
maturation of leukocyte rolling, adhesion, transmigra-
tion, and chemotaxis, which in turn strengthens the
innate immune response.

Table 1 Leukocyte adhesion molecules

Endothelial adhesion
molecule

Leukocyte
ligand

Endothelial
ligand

Functions

E-selectin PSGL-1, CD44,
ESL-1

None Capturing, rolling,
integrin activation

P-selectin PSGL-1 None Capturing, rolling,
integrin activation

ICAM-1 LFA-1, Mac-1 None Rolling, adhesion,
crawling

VCAM-1 VLA4 None Rolling, adhesion,
crawling

RAGE Mac-1 None Adhesion, crawling,
transmigration

ICAM-2 LFA-1, Mac-1 None Crawling, initiating
diapedesis

JAM-A LFA-1 JAM-A Leukocyte
diapedesis

JAM-B VLA-4 JAM-B, JAM-C Prevention of
reverse TEM

JAM-C Mac-1 JAM-C, JAM-B Prevention of
reverse TEM

ESAM Unknown ESAM Diapedesis

PECAM-1 PECAM-1 PECAM-1 Promoting TEM

CD99 CD99 CD99 Promoting TEM

CD99L2 CD99L2 CD99L2 Promoting TEM

VE-cadherin None VE-cadherin Preventing
diapedesis

Location and function of key leukocyte adhesion molecules and their ligands
[15, 25, 48]
ESAM endothelial cell-selective adhesion molecule, CD99L2 CD99 antigen-like
protein 2, JAM junctional adhesion molecule, PECAM-1 platelet endothelial cell
adhesion molecule 1, VE-cadherin vascular endothelial cadherin, VLA4 very late
antigen 4, TEM transendothelial migration

Table 2 Expression of leukocyte adhesion molecules in
neonates and adults

Molecule Cell type Expression in fetuses/premature
neonates compared to adults
and respective references

Mac-1 PMN ↓ Reduced
↑ Increased
↔ Equal

[26, 31, 36]
[37]
[30, 33]

LFA-1 PMN ↓ Reduced
↔ Equal

[26, 45]
[30, 31, 36, 37]

CXCR2 PMN ↔ Equal [31]

CD 18 PMN ↓ Reduced [26]

L-selectin PMN ↓ Reduced
↔ Equal

[26, 33, 37, 45, 46]
[47]

E-selectin Skin
EC
Yolk sac vessels

↓ Reduced
↓ Reduced
↓ Reduced

[38]
[31]
[29]

P-selectin EC
Fetal skin
PMN
Yolk sac vessels

↓ Reduced
↓ Reduced
↓ Reduced
↓ Reduced

[34]
[38]
[39]
[29]

RAGE PMN ↑ Increased [30]

ICAM-1 Skin
EC
Yolk sac vessels

↓ Reduced
↓ Reduced
↓ Reduced

[38]
[31]
[29]

ICAM-2 Yolk sac vessels ↓ Reduced [29]

VCAM-1 Skin
Yolk sac vessels

↓ Reduced
↓ Reduced

[38]
[29]

PSGL-1 PMN
Yolk sac vessels

↓ Reduced
↓ Reduced

[31, 39]
[29]

PECAM-1 EC
Yolk sac vessels

↔ Equal
↔ Equal

[31]
[29]

VE-cadherin EC ↔ Equal [31]

VLA-4 PMN ↓ Reduced [45]

PECAM-1 platelet endothelial cell adhesion molecule 1, VE-cadherin vascular
endothelial cadherin, VLA4 very late antigen 4, EC endothelial cells
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Analytical limitations and outlook
Despite technical progress, human neonatal in vivo im-
aging of immune cell trafficking is not yet available.
Thus, fetal leukocyte recruitment has mainly been stud-
ied in vitro using leukocytes and endothelial cells in
dynamic flow chambers or transmigration assays [15, 30,
31, 40, 41]. Reports about in vivo investigations of fetal
leukocyte recruitment in animals are limited and were
mostly performed in nonmammalian organisms [42, 43].
A recently, developed intravital microscopic mouse model
now offers the chance to visualize rolling and adhesive
behavior of leukocytes during different stages of fetal
development (E13–18) in vivo [29]. However, its micro-
surgery and microscopic approach is technically challen-
ging and introduction of clinically relevant conditions
difficult (Hudalla et al. in preparation). Moreover, the
exploration of underlying mechanisms is often limited by
sample sizes [5, 23, 24].
While our understanding of the fetal and early neonatal

immune system is ever growing, treatment options are
still limited and the vast majority of pharmaceutical trials
are run in adults with fully developed immunity. Novel
analytical tools and models to study innate immunity may
facilitate the development of new gestational age- and
sepsis stage-specific therapeutic approaches to fine-tune
the premature immune system and thereby optimize the
treatment of neonatal infections and sepsis [44].
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