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Abstract

Perinatal complications in both term- and preterm-born infants are a leading cause of neonatal morbidities and
mortality. Infants face different challenges in the neonatal intensive care unit with long-term morbidities such as
perinatal brain injury and bronchopulmonary dysplasia being particularly devastating. While advances in perinatal
medicine have improved our understanding of the pathogenesis, effective therapies to prevent and/or reduce the
severity of these disorders are still lacking. The potential of mesenchymal stem/stromal cell (MSC) therapy has
emerged during the last two decades, and an increasing effort is conducted to address brain- and lung-related
morbidities in neonates at risk. Various studies support the notion that MSCs have protective effects. MSCs are an
easy source and may be readily available after birth in a clinical setting. MSCs’ mechanisms of action are diverse,
including migration and homing, release of growth factors and immunomodulation, and the potential to replace
injured cells. Here, we review the pathophysiology of perinatally acquired brain and lung injuries and focus on
MSCs as potential candidates for therapeutic strategies summarizing preclinical and clinical evidence.
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Introduction
Despite advances in obstetrics and neonatology, both pre-
term- and term-born infants continue to face serious risks
during pregnancy, parturition, and adaptation after birth.
Perinatal medicine is therefore a major public health issue
around the world. The clinical presentation after perinatal
complications or preterm birth in an individual child is
complex. This complexity results from multiple potential
causal pathways, signs, and symptoms of injury. Typical
pathologies in these newborns include perinatal brain
injury and bronchopulmonary dysplasia (BPD), among
others. New avenues to treat these morbidities have
emerged among which stem cells being particularly prom-
ising. The body of knowledge of stem cell biology and

their function in tissue regeneration and protection has
broadened exponentially in the last two decades. This re-
view will discuss mesenchymal stem/stromal cells (MSCs)
as a therapeutic approach for both brain and lung diseases
in infants at risk. Furthermore, we will highlight the pre-
clinical and clinical data that have emerged on the role of
MSCs in perinatal medicine.

Perinatally acquired organ injury
Perinatally acquired organ injury affects both term and
preterm infants. Depending on the timing of injury and/or
delivery, infants need to cope with different challenges. In
the developing brain of a preterm infant, the spectrum of
injury suggests that the underlying pathophysiology is not
due to a single lesion but consists of white and gray matter
disturbances [1]. Thus, a comprehensive multidimen-
sional assessment of potential contributing factors such
as maternal medical history, obstetric antecedents,
intrapartum factors (including fetal heart rate monitor-
ing results and issues related to the delivery itself ), and
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placental pathology is recommended [2]. In the term-
born infants, perinatal insults such as birth asphyxia or
perinatal stroke affect 1 to 3 newborns out of 1000 [3, 4].
In contrast, in preterm-born infants morbidity and
mortality strongly relate to the gestational age. While
preterm birth before 37 weeks of gestation occurs in 5–
8 % of all pregnancies, very low gestational age (VLGA)
before 32 weeks of gestation occurs in about 1 % of sin-
gletons and 9 % of twin pregnancies [5]. Mortality of
VLGA infants ranges between 7.3 and 21.4 % at 30 days
and 9.0 and 22.7 % at 1 year [6]. Additionally, a large
number of survivors suffer significant long-term dis-
abilities including cerebral palsy (CP), epilepsy, in-
creased hyperactivity, and developmental disorders [7].
For example, the risk to develop CP is 30 times higher
in infants born before 33 weeks of gestation compared
to term-born infants [8]. Moreover, injury in these in-
fants is frequently exacerbated by fetal inflammation
and preferentially affects cerebral white matter result-
ing in periventricular leukomalacia and germinal matrix
hemorrhage [1]. Currently, the only intervention known
to reduce the burden of perinatal brain injury in the
term population is hypothermia. Several large clinical
trials confirmed that hypothermia in infants with neo-
natal hypoxic-ischemic encephalopathy is associated
with a significant reduction in death and disability [9].
However, 40–50 % of infants treated with hypothermia
still die or develop significant neurological disability
[10]. In the preterm population, therapeutic options are
lacking as hypothermia is contra-productive. Antenatal
magnesium sulfate prior to birth at less than 30 weeks
of gestation reduces CP and combined CP and mortal-
ity rate at 2 years of age. However, randomized control
trials do not demonstrate long-term neurological bene-
fits [11, 12]. Approximately 25 % of VLGA infants will
develop BPD with long-lasting consequences such as
chronic respiratory impairment and neurodevelopmen-
tal delay [13]. Changes in clinical management reduced
the incidence of BPD significantly with a shift from
VLGA to extreme low gestational age newborns devel-
oping BPD. Not surprisingly, the current pathogenesis
of BPD is based on immaturity with disordered alveolar
and capillary development and represents a develop-
mental disorder [14]. The plasticity of the developing
lung after preterm birth is poorly understood. Long-term
follow-up studies suggest an incomplete regeneration of
the lung growth in survivors with BPD. Current treatment
options for BPD include vitamin A and caffeine in
addition to supportive therapies, but their results often re-
main unsatisfactory [15].
Together, therapeutic approaches to counteract the

consequences of perinatally acquired injury are sparse,
and new measures are desperately needed especially for
preterm infants [1, 15–17].

Pathophysiology of brain and lung injury
Experimental studies identified different phases of peri-
natally induced neuronal death. Primary neuronal death is
related to depletion of tissue energy reserves with primary
energy failure. The secondary and tertiary phases are re-
lated to excitotoxicity, mitochondrial dysfunction, and free
radical accumulation leading to cell necrosis or apoptosis
with impaired myelination and/or axonal function [18].
The secondary and tertiary phases may cause persistent
inflammation and gliosis, sensitization to further injury,
and impaired oligodendrocyte maturation and myelination
[19]. Interestingly, inflammation is increasingly recognized
as being a critical contributor to both normal develop-
ment and injury outcome especially in the immature brain
[20]. Maternal infection/inflammation is not only a major
risk for preterm birth but is linked to systemic fetal in-
flammatory response which, in turn, may elicit injury in
the fetus. Perinatal inflammation modulates vulnerability
to and development of brain injury [21] and influences
critical phases of myelination and cortical plasticity [20].
Several studies suggest that inflammation may play a crit-
ical role in autism and schizophrenia [22]. Together, brain
development, myelination, vascularization, and apoptosis
are strongly influenced by inflammatory responses in both
physiologic and pathophysiologic conditions [20, 23]. Piv-
otal regulators of inflammatory responses in the brain are
glial cells which orchestrate the release of pro- and anti-
inflammatory cytokines [24, 25]. Pro-inflammatory cyto-
kines such as tumor necrosis factor (TNF)-α and inter-
feron gamma (IFN-γ) are cytotoxic to oligodendrocytes
[26]. However, glial cells may produce anti-inflammatory
cytokines (e.g., IL-10), which suppress expansion of IL-1β
and TNF-α and contribute to resolving inflammation
and repair processes [25]. Further, astrogliotic scar for-
mation installs a barrier around tissue lesions to restrict
the crossing of inflammatory cells into surrounding
healthy areas [24].
The regulation of the inflammatory responses in the

newborn appears to be a link that may explain some of
the common features of organ injury in preterm infants.
Many studies identified characteristic inflammatory
changes and altered growth factor signaling in BPD such
as initial influx of neutrophils into the lung followed by
increased numbers of macrophages [27]. The release of
cytokines and disturbance of growth factor signaling such
as transforming growth factor (TGF)-β results in in-
creased apoptotic process [28]. Furthermore, several stud-
ies showed that dysmorphic capillaries and subsequent
development of pulmonary hypertension are related to an
altered pattern of angiogenic growth factors such as vas-
cular endothelial growth factor (VEGF) and its receptors
[29]. Finally, lung injury leads to remodeling or early al-
veolar epithelial dysfunction which in turn promotes lung
inflammation [30].
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Taken together, perinatal inflammation is a strong modu-
lator of both physiologic and pathophysiologic development
of the neonatal organs. The fetal inflammatory response to
certain cues such as lipopolysaccharides (LPS) [31] can be
detected not only in the brain and the lung but also in re-
mote tissues not directly exposed to LPS such as the spleen,
liver, and mediastinal lymph nodes [32–34]. Protective
strategies to counteract the cascades leading to injury
should therefore not focus on one organ or system but ra-
ther treat perinatally acquired injury globally, in which the
immune system plays a key role. MSCs possess a regenera-
tive potential. They were shown to modulate innate and
adaptive immune responses, to have antiapoptotic effects,
to decrease inflammation, and to enhance tissue repair,
mostly through the release of paracrine factors [35, 36].

Mesenchymal stem/stromal cells
Stem cells are broadly defined as cells with self-renewing
and differentiation capacity. Although stem cells derived
from embryonic tissue were identified first, the clinical
use is limited due to ethical concerns and tumorigenic
potential [37, 38]. Clinical and animal stem cell-based
studies to prevent or repair perinatally acquired injury
have emerged during the recent years with MSCs being
particularly promising. These cells are considered som-
atic stem cells as they originate from stem cell niches
such as bone marrow (BM), skin, adipose umbilical cord,
and placental tissues [39]. MSCs can be isolated from
placental membranes and tissues [40, 41], amniotic fluid
[42–44], umbilical cord blood [45, 46], and the umbilical
cord connective tissues (Wharton’s jelly; WJ) [47, 48].
Although all of these cells are MSCs, specific consider-
ations with respect to clinical use, time of application,
application route, availability, and ethical aspects need to
be made.
MSC-based therapies are an attractive strategy since the

pathophysiology of perinatally acquired injury is heteroge-
neous and MSCs have the capacity to adapt to the micro-
environment of injured organs. The strategy may be either
or both replacement/restoration of lost tissue and/or pro-
tection/salvage of injured cells. In term infants at risk for
hypoxic-ischemic injury or neonatal ischemic stroke, MSCs
could exert a neuroprotective effect starting at the acute
phase of injury. The timing and presentation of the injury
are usually well defined. MSCs could provide trophic sup-
port and/or amelioration of the inflammatory responses,
leading to repair or reduced cell death. However, the differ-
ent cell types, transplantation routes, and the timing need
to be accounted for. Given the gold standard therapy of
hypothermia for this kind of injury, MSCs have to proof
additive/synergistic effects in order to be considered [49].
In contrast, in the preterm population, the timing of the in-
jury is often unclear and the pathophysiology is more com-
plex. The clinical diagnosis of infants at risk is challenging

as symptoms such as CP or BPD are diagnosed in early
childhood years. Thus, the injury may be considered more
chronic as extensive atrophy and gliosis of the white matter
tract or dysfunction of lung architecture are present. MSCs
could modulate not only the inflammatory response after
delivery but also the degree and magnitude of the injured
white matter and epithelial cells as well. However, many
questions such as altered pattern of growth factors and
intercellular matrix proteins that could affect proliferation
or differentiation of the desired cell types need to be ad-
dressed first.

MSCs: homing and migration
The approach of MSCs as a therapy for perinatal injury is
based on several crucial properties of MSCs, including de-
livery of the cells “homing” to the site of injury. Migration
and homing to the tissue of injury is influenced by multiple
factors including age, passage, and number of cells; culture
conditions; and delivery method [50]. The apparent migra-
tion and homing abilities of MSCs without tumorigenic
potential were described by several groups and in different
disease models [51–54]. In BPD animal models, peripher-
ally injected cells were detected in the hyperoxia-induced
injured lung [55, 56]. Experimental studies identified che-
mokines as major molecules responsible for cell homing
with chemokine receptors CXCR3, CXCR4, and CXCR6
being particularly important [57–59]. Further secretion of
factors such as stromal cell-derived factor-1α (SDF-1α),
which is a CXCR4 ligand, promotes migration of MSC to
the injury site [60]. Interestingly, the phenotype of MSCs is
an important criterion as well. CD9 (high)-positive MSCs
display improved engraftment compared to the CD9 (low)-
positive population in a murine ischemic hind limb model
[61]. This observation highlights the rather heterogeneous
MSC population and the importance of proper MSC
characterization and definition for future studies. Cur-
rently, MSC characterization is based on a set of minimal
criteria [62], and they display a cell surface repertoire and
gene expression pattern which differ among MSCs from
various tissues of origin and culture conditions used
[63–66]. For example, MSCs derived from amniotic fluid
express many cell surface markers characteristic for BM-
derived MSCs including CD73, CD90, CD105, and major
histocompatibility complex (MHC) class I [44]. The lack of
MHC class II, CD40, CD80, and CD86 molecules suggests
a low immunogenic phenotype of MSCs when compared
to other stem cell sources [67]. In contrast, WJ-MSCs ex-
press cell surface markers CD29, CD44, CD73, CD90,
CD105, CD146, and CD166 [68, 69] and are considered
more primitive cell population relative to BM-derived
MSCs [70]. As a result, WJ-MSCs differentiate more effi-
ciently into neural progenitors compared to BM-derived
MSC [71]. In addition, the underlying clinical condition
may also affect the phenotype of MSCs. WJ-MSCs derived
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from umbilical cords collected after preeclamptic preg-
nancies seem to be more committed to neuroglial dif-
ferentiation compared to cords from uncomplicated
pregnancies [66].

MSCs: secretome and immunomodulation
While MSCs have a proven restorative capacity in re-
sponse to injury cues, the question of potential protective
mechanisms remains unclear. Most of the available data
comes from adult neurodegenerative and lung diseases or
in vitro studies. Studies identified the induction of cyto-
kines, interleukins, and trophic factors predominately in-
volved in neurogenesis, angiogenesis, hematopoiesis, and
cardiovascular regeneration being crucial for the mostly
paracrine effects [58, 72]. For example, WJ-MSCs’ secre-
tome triggers neuronal survival and differentiation in vitro
and in vivo [73, 74]. Secreted factors such as VEGF-A,
angiopoietin-1, fibroblast growth factor (FGF)-I, hepato-
cyte growth factor (HGF), FGF-II, brain-derived neuro-
trophic factor (BDNF), glial cell line-derived neurotrophic
factor (GDNF), and platelet-derived growth factor
(PDGF)-AB were identified [75–79]. Importantly, MSCs’
secretome alters both adaptive and innate immune re-
sponses [55, 80]. MSCs inhibit autoreactive T cell re-
sponses in animal models of multiple sclerosis and
hypoxic-ischemic brain injury [81–83]. MSCs shift the al-
veolar macrophages from a M1 (pro-inflammatory) to a
M2 (protective) phenotype ameliorating pulmonary injury
in acute LPS-induced acute lung injury model [84]. Thus,
the shifting from the M1 to the M2 states and promoting
regulatory T cells are a function unique to MSCs [85]. Be-
sides T cell modulation, MSCs inhibit B cell proliferation,
neutrophil and monocyte function, and NK toxicity
[86–89]. Although these modulatory effects are partially
understood, direct cell-to-cell contact and soluble fac-
tors are relevant [90]. Additionally, MSC effects expand
beyond constitutive immune modulatory properties
with the release of cytokines and growth factors such as
VEGF, transforming growth factor beta-1 (TGF-β1),
TNF-α, interleukin-1 (IL-1), interleukin-6 (IL-6), and
IFN-γ [91–94].

MSCs: regeneration/replacement of injured cells
MSCs’ multipotency and self-renewal properties make
them valid candidates for providing both lung and brain
cell regeneration/replacement. Although, this strategy
for repair carries risks such as tumorigenic potential [37,
38], MSCs were successfully differentiated into various
types of cells including cardiomyocytes, myocytes, and
epidermal and endothelial cells [54, 95–97]. Importantly,
MSCs express neuroglial commitment and can be differ-
entiated into lung cells as well [98–102]. Not surpris-
ingly, MSCs are currently tested in various animal
models and clinical trials for lung and brain regeneration

[103–105]. Although this line of investigation is particu-
larly intriguing, MSCs’ potential to replace injured cells
is not proven and is a matter of constant debate [103,
104, 106]. For example, intravenously injected MSCs im-
prove myocardial infarction without permanent replace-
ment of injured cells [107]. In the lung, MSCs embolize
causing endothelial damage and are cleared in a matter
of hours [107]. Taken together, the MSCs’ low rate of in
vivo engraftment and differentiation suggests that trans-
planted cells affect tissue injury and repair through para-
crine factors. Whether the factors released by the MSCs
or the cells themselves are more promising for the ther-
apy of lung and brain injury in the newborn still remains
an open question.

MSCs: extracellular vehicles
The translation from bench to bedside requires the most
efficacious and safest approach. Thus, the question of cell-
based versus cell-free therapy needs to be addressed.
Given that the MSCs’ therapeutic potential has been
shown to be largely triggered via paracrine effects and not
differentiation, recent studies focus on extracellular vehi-
cles (EV) [108]. These are all types of vehicles present in
the extracellular space, including shedding vesicles, apop-
totic bodies, and exosomes. Exosomes (40–100 nm in
diameter) are secreted by cells in a regulated fashion, pos-
sess the ability to transfer proteins and functional genetic
materials such as mRNA and microRNAs, and are in-
volved in cell-to-cell signaling and regulation [80]. Not
surprisingly, MSC-derived EV are contributing to tissue
repair in brain injury including stroke and Alzheimer’s dis-
ease [109–111]. The cell-free approach is very promising;
however, it is still in its infancy. In fact, stem cells do
not just secrete growth factors and/or cytokines but en-
courage the growth and even supplement (host) cells
[112–114]. Importantly, the stem cells’ potential of
immunomodulation and protection after injury seems
to depend on the bidirectional communication between
the injured host cells and the graft via the exchange of
specific information [115].

MSCs: clinical trials
As a result of the remarkable regenerative potential of
MSCs, MSCs are ideal candidates for clinical cell therapy.
MSCs are easily available, have a good safety profile and
homing capacity, and importantly are relatively immuno-
privileged, allowing allogeneic transplantation. Not sur-
prisingly, MSCs have been tested in clinical trials in
several neurodegenerative diseases such as stroke [116–
118], amyotrophic lateral sclerosis [119], multiple sclerosis
[120, 121], and spinal cord injury [122]. Several clinical tri-
als indicated no serious side effects or dose-limiting tox-
icity in acute respiratory distress syndrome [123] and
chronic obstructive pulmonary disease [124, 125]. Also,
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safety and feasibility trials for CP [126–128] and BPD
[129, 130] were successful. A recent double-blind random-
ized control study used allogeneic umbilical cord blood, in
combination with erythropoietin, in children diagnosed
with CP showing motor and cognitive benefits [131]. In
contrast to previous studies, a large safety study used au-
tologous umbilical cord blood directly after birth for in-
fants at risk for hypoxic-ischemic encephalopathy [132].
This approach differs significantly from previous studies
as it aims mainly to prevent and not to replace affected
cells. Cells were transplanted directly after birth and in
combination with hypothermia. Authors concluded that
the collection, preparation, and infusion of fresh autolo-
gous umbilical cord blood cells for use in infants with
hypoxic-ischemic encephalopathy are feasible. The feasibil-
ity and safety of intra-tracheal infusion of umbilical cord-
derived MSCs in BPD was reported as well [129]. MSCs re-
duced BPD severity and retinopathy of prematurity and
improved inflammatory cytokine profile in tracheal aspi-
rates in a phase 1 dose escalation study. Several other clin-
ical trials for neonatal brain and lung injury are currently
listed as in progress or completed, and more results should
become available in the near future (ClinicalTrials.gov
Identifiers: NCT01297205, NCT01828957, NCT02023788,
NCT01832454, NCT01962233, NCT01988584, NCT0120
7869).

Conclusions
Given the array of potential regenerative mechanisms of
MSCs to protect neonatal brain and lungs, therapeutic ap-
plications can be envisioned in the near future. The mech-
anisms span anti-apoptotic/pro-mitotic capacities leading
to neovascularization by the stimulation of angiogenesis
and anti-inflammatory responses. Further, stimulation of
neuro- and gliogenesis, synaptogenesis, neurite outgrowth,
and also immunomodulation are crucial. Available data
clearly demonstrate that MSC and secreted factors are
beneficial to treat a variety of neurodegenerative and lung
disorders. Although the data are very promising, critical
questions need to be answered:

– First, what are the appropriate age, passage, and
dosage of the transplanted MSCs? Freshly isolated
MSCs may be beneficial compared to cultured cells,
but is this practicable in a clinical setting especially
in the context of preterm infants [133]?

– What is the best source and application route of
MSCs? Banking of UCB and placental tissue offer an
easily accessible and ethically responsible source of
MSCs, and minimally invasive routes are currently
tested [47, 66, 134–136].

– Finally, how does the transplantation of MSCs
impact the standard care in the neonatal intensive
care unit? The lack of effective interventions for

many morbidities related to prematurity unlocks the
potential of cell-based personalized treatments. Safe
and effective clinical interventions are future
perspectives bearing hope to improve the lifelong
outcomes of the infants in our care. This has to be
proven in long-term follow-up studies.
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