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Abstract

Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease of the intestine. IBD is a multifactorial
disorder, and IBD-associated genes are critical in innate immune response, inflammatory response, autophagy, and
epithelial barrier integrity. Moreover, epithelial oxygen tension plays a critical role in intestinal inflammation and
resolution in IBD. The intestines have a dynamic and rapid fluctuation in cellular oxygen tension, which is
dysregulated in IBD. Intestinal epithelial cells have a steep oxygen gradient where the tips of the villi are hypoxic
and the oxygenation increases at the base of the villi. IBD results in heightened hypoxia throughout the mucosa.
Hypoxia signals through a well-conserved family of transcription factors, where hypoxia-inducible factor (HIF)-1α
and HIF-2α are essential in maintaining intestinal homeostasis. In inflamed mucosa, HIF-1α increases barrier
protective genes, elicits protective innate immune responses, and activates an antimicrobial response through the
increase in β-defensins. HIF-2α is essential in maintaining an epithelial-elicited inflammatory response and the
regenerative and proliferative capacity of the intestine following an acute injury. HIF-1α activation in colitis leads to
a protective response, whereas chronic activation of HIF-2α increases the pro-inflammatory response, intestinal
injury, and cancer. In this mini-review, we detail the role of HIF-1α and HIF-2α in intestinal inflammation and injury
and therapeutic implications of targeting HIF signaling in IBD.
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Introduction
The intestine is a highly regenerative tissue, which com-
pletely renews every 5 to 6 days. The intestinal epithelial
cells are critical for digestion, secretion of hormones and
mucin, and absorption of nutrients. The epithelial cells
are under control by an exquisite signaling cascade
(Notch, BMP, Wnt/β-catenin) that maintains prolifera-
tion and differentiation of epithelial progenitors and the
self-renewal capacity of intestinal epithelial stem cells. In
addition, cellular oxygen dynamics are critical in main-
taining intestinal homeostasis. The intricate oxygen gra-
dient in the intestine is set up by the rapid propagation
of the enteric microbiota just after birth. The microbiota
composition of newborns suggests that aerobic and fac-
ultative anaerobic bacteria consume luminal oxygen,
which allows the growth of obligate anaerobes and es-
tablishes an anoxic lumen [1]. The anoxic lumen in part

establishes the oxygen gradient of the intestinal epithe-
lium, as cells directly adjacent to the lumen are hypoxic
relative to the cells that are close to the base of the
crypts [2]. Moreover, microbiota-derived short-chain
fatty acids regulate oxygen consumption in intestinal
epithelial cells [3]. Dysregulation of oxygen gradients is
observed in inflammatory bowel disease (IBD). IBD is di-
vided into two major subgroups: ulcerative colitis (UC)
and Crohn’s disease (CD). The precise etiology of IBD is
unknown. However, oxygen signaling plays an important
function in the inflammatory and injury response.

Oxygen sensing and signaling in the intestine
The major transcription factor, which mediates the cellu-
lar response to hypoxia, is hypoxia-inducible factor
(HIF). HIFs are highly conserved transcription factors
that are present in all metazoans. During the divergence
of vertebrates, gene duplication led to the emergence of
additional α subunits. Mammals contain HIF-1α, HIF-
2α, and HIF-3α. HIF-α subunits are regulated through a
well-characterized hydroxylation-induced proteasome-
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mediated degradation during normal cellular oxygen
tension. Degradation is mediated by prolyl hydroxylase
domain enzymes (PHDs). Mammalian cells contain three
PHDs, EGL nine homolog (EGLN)1, EGLN2, and
EGLN3. PHDs are α-ketoglutarate dependent dioxy-
genases that hydroxylate HIF-α subunit on two proline
residues. PHD specificity for HIF-α subunits is not clear,
but disruption of all three genes is needed for robust
HIF-1α and HIF-2α activation in the intestine [4]. Hy-
droxylation serves as a recognition motif for the von
Hippel-Lindau tumor suppressor protein, which recruits
an E3 ubiquitin ligase complex leading to rapid protea-
somal degradation of HIF-α subunit (Fig. 1). PHDs use
molecular oxygen for the hydroxylation reaction, and
therefore, in a limited oxygen environment, HIF-α sub-
unit is not hydroxylated leading to stabilization. HIF-α
subunit binds to an obligate heterodimer binding partner
HIF-1β also called aryl hydrocarbon receptor nuclear
translocator (ARNT) and subsequent recruitment to
HIF response elements (HREs) present in the promoter
of HIF target genes (Fig. 1). It is estimated that in a

specific cell type, HIFs bind to roughly 500 sites follow-
ing hypoxic activation [5].

Hypoxia and IBD
Using staining techniques to visualize hypoxic foci, a ro-
bust increase in hypoxia is observed in mouse models of
colitis [2]. Physiological hypoxia as mentioned above is lo-
calized to epithelial cells adjacent to the lumen. In colitis,
hypoxic staining is observed throughout the mucosa. The
precise mechanism for the increase in hypoxia is not clear,
but it is likely due to several factors. Inflammation leads to
enhanced oxygen consumption of intestinal epithelial
cells. Inflammation increases local vasculitis and thus de-
creasing the oxygen availability to inflamed areas [6]. Re-
cently, it was shown that transmigrating neutrophils can
consume local oxygen, thereby enhancing hypoxia in col-
itis [7]. In addition to hypoxic staining in mouse models,
HIF-1α and HIF-2α are highly increased in epithelial cells
in UC and CD patients [8]. Currently, the expression and
function of HIF-3α have not been thoroughly assessed.

Fig. 1 Schematic diagram of oxygen-dependent HIF regulation. In normoxia, HIF-α subunits are hydroxylated on two conserved proline residues by
ELGN1, ELGN2, or EGLN3. Hydroxylation of HIF-α subunit leads to rapid degradation through von Hippel-Lindau tumor suppressor protein (VHL)
binding and proteasome-mediated degradation. In hypoxia, proline hydroxylation is inhibited resulting in decreased VHL binding and stabilization of
protein. Following stabilization, HIF-α subunit forms a heterodimer with (ARNT) leading to activation of HIF target genes. ARNT aryl hydrocarbon
receptor nuclear translocator, EGLN EGL nine homolog, HIF hypoxia-inducible factor, VHL von Hippel-Lindau tumor suppressor protein

Shah Molecular and Cellular Pediatrics  (2016) 3:1 Page 2 of 5



HIF-1α and HIF-2α targets in IBD
HIF-1α and HIF-2α can bind to the same canonical HREs.
However, through mouse models and cell studies, it is
clear that HIF-1α and HIF-2α regulate distinct subset of
genes. HIF-1α in intestinal epithelial cells is widely
recognized as a major protective factor in IBD. IBD results
in a dysregulation of a very complex and intricate network
of tight junctions, which are critical in maintaining a bar-
rier that is needed to separate commensal microbiota
from the mucosal immune cells. HIF-1α directly regulates
several barrier protective genes during injury. Moreover,
HIF-1α activation can decrease cytokines and leads to an
increase in β-defensins, a critical antimicrobial protein
(Fig. 2) [2, 9–13]. PHDs inhibitors, which activate HIF-1α
and HIF-2α, are protective in acute colitis models through
a HIF-1α-dependent mechanism [12, 14, 15]. However,
chronic activation of HIF-2α in intestinal epithelial cells
leads to a robust spontaneous intestinal inflammation in a
dose-dependent manner [8]. Using mouse models in
which HIF-1α and HIF-2α are overexpressed in intestinal
epithelial cells demonstrate a distinct function for these
transcription factors in IBD. Moderate overexpression of
HIF-2α in intestinal epithelial cells does not result in any
basal intestinal injury. However, expression of pro-
inflammatory mediators is significantly increased, and the
mice are highly susceptible to inflammatory injury in
mouse models of colitis. Highly overexpressing HIF-2α in
intestinal epithelial cells leads to spontaneous colitis, and
the mice die at 35 days old from massive intestinal inflam-
matory disorder [8]. HIF-2α directly regulates a number
of pro-inflammatory cytokines including tumor necrosis
factor-α, which is essential for HIF-2α-induced inflamma-
tion [8]. Moreover, recent work has demonstrated that

HIF-2α is essential in barrier function [16, 17]. A chronic
increase in HIF-2α leads to high turnover of the tight
junction protein occludin, leading to a decrease in barrier
integrity [17]. Using similar mouse models, moderate or
high overexpression of HIF-1α leads to a decrease in in-
testinal damage in a colitis model, as expected [18]. Inter-
estingly, activation of HIF-1α does not result in increased
tumorigenesis in a colitis-associated colon cancer model,
further suggesting that HIF-1α is a good target for colitis
[18]. Activation of HIF-2α not only leads to activation of
the inflammatory response but there is an increase in
tumor number, tumor size, and tumor progression in
mouse models of colon cancer [19]. In addition to directly
regulating pro-inflammatory mediators and barrier func-
tion, HIF-2α is important in the wounding response and
proliferation following injury (Fig. 2) [8, 17, 19, 20]. Inter-
estingly, overexpression of both HIF-1α and HIF-2α also
leads to heightened inflammatory response suggesting that
activation of HIF-1α does not protect the pro-
inflammatory response of HIF-2α [8]. This data contra-
dicts the battery of literature showing a protective
function of PHD inhibitors in colitis. There maybe several
reason for this discrepancy. Chemical inhibition of PHDs
leads to a more robust HIF-1α activation rather than HIF-
2α activation. This is indeed true for dimethyloxaloylgly-
cine, a commonly used PHD inhibitor, where doses
enough for HIF-1α activation do not lead to significant in-
crease in HIF-2α-specific targets [8]. Also, PHD inhibitors
may lead to more pulsatile activation of HIF-1α and HIF-
2α rather than chronic high increase in HIF-2α, which
leads to inflammatory injury. Lastly, the temporal regula-
tion of HIF-1α and HIF-2α has not been critically assessed
in chronic models of colitis. HIF-1α is regulated in a

Fig. 2 Distinct roles of HIF-1α and HIF-2α in IBD. Activation of HIF-1α increases barrier protective genes and activates a protective innate immune
response and antimicrobial response. HIF-2α activation in the intestine leads to an increase in pro-inflammatory mediators and decrease barrier
integrity and results in increase susceptibility to colon tumors. ARNT aryl hydrocarbon receptor nuclear translocator, HIF hypoxia-inducible factor
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cyclical manner through a negative feedback loop medi-
ated by mir-155. HIF-1α increases the expression of miR-
155, which in turn represses HIF-1α expression following
sustained hypoxia [21]. Therefore, in IBD, chronic activa-
tion of HIF-2α with low HIF-1α expression may promote
the pro-inflammatory response and decrease the intestinal
barrier integrity leading to heightened inflammation and
injury.

Hypoxia-based therapies
Currently, the pan-PHD inhibitors dimethyloxaloylgly-
cine, FG-4497, and TRC160334 are protective in mouse
models of colitis [14, 15, 22]. However, HIF-2α may in-
crease the inflammatory response, and therefore, optimal
HIF-based therapies would be pharmacological agents
that can specifically increase HIF-1α. AKB-4924 is a
PHD inhibitor that results in modest activation of HIF-
2α but robustly activates HIF-1α [23]. AKB-4924 in-
creases the antimicrobial response and protective innate
immune response. AKB-4924 treatment improves the
intestinal barrier integrity and reduces the pro-
inflammatory response. The beneficial effects of AKB-
4924 were due to intestinal HIF-1α, as disruption of
HIF-1α attenuated the protective role [12]. Moreover,
HIF-2α inhibitors have been recently identified. HIF-2α
(but not HIF-1α) contains ligand-binding cavity, al-
though endogenous substrates have not been identified
[24]. This cavity has been targeted for drug develop-
ment, and several promising highly specific small-
molecule inhibitors are identified [25]. Currently,
these drugs have not been assessed in mouse models
of colitis, but the data suggest that disruption of in-
testinal epithelial HIF-2α decreases the inflammatory
response in colitis [8].

Conclusion
HIF-1α and HIF-2α play an essential role in IBD. Under-
standing the temporal regulation of HIF-1α and HIF-2α
will be key to design novel and effective HIF-based therap-
ies for IBD. It is likely that both responses are critical in
the initiation and resolution of intestinal inflammation.
HIF-1α increases the barrier integrity and antimicrobial
response, whereas HIF-2α activates pro-inflammatory me-
diators to elicit an immune response and stimulates epi-
thelial proliferation to promote regeneration. However,
more work is needed to understand the dynamic regula-
tion of HIF-1α and HIF-2α in models of chronic colitis.
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